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1. Introduction

Topological field theory has been a lively area for research ever since the

appearance of the seminal work by Witten [1-3] a few years ago. Activity in the
field increased when the observation was made [4,5] that topological gravity in
two dimensions is closely related to two-dimensional quantum gravity and its
description in terms of random matrix models. Several reviews of the subject
are now available #! . '

I will try to complement these existing reviews by focussing on an approach to

topological field theory based on the construction by Mathai and Quillen [10] of
Gaussian shaped Thom forms for finite dimensional vector bundles. This very
elegant approach is due to Atiyah and Jeffrey [11] who realized that topolog-
ical field theory could be regarded as an infinite dimensional generalization of

#1
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of topological field theory.
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this construction. There are several advantages of adopting this point of view.
First of all, it provides an a priori explanation of the fact that finite dimensional
topological invariants can be represented by functional integrals, the hallmark
of topological field theory. Moreover, it has the charming property of giving
a unified description of all kinds of (cohomological) topological field theories
and supersymmetric quantum mechanics. This has the added bonus of making
this approach quite elementary as it allows one to develop the main ideas in
a quantum mechanical setting and then to transfer them almost verbatim to
field theory. Lastly, it also provides some insight into the mechanism of the
localization of path integrals in supersymmetric quantum mechanics and topo-
logical field theory.

To those already familiar with the subject, these lectures will hopefully provide
a new and perhaps enlightening perspective on topological field theory. At the
same time they should, ideally, constitute an elementary introduction to the
subject requiring no prior knowledge of the field and little more than some basic
differential geometry and the ability to perform Gaussian integrals.

The recurrent theme in these notes will be the Euler number of a vector bundle.
In order to understand the basic idea of the Atiyah-Jeffrey approach, let us
therefore recall that classically there exist two quite different prescriptions for
calculating the Euler number ¥ (X) = (T X) of (the tangent bundle of) a
manifold X. The first is topological in nature and instructs one to choose a
vector field V7 on X with isolated zeros and to count these zeros with signs (this
is the Hopf theorem). The second is differential geometric and represents y (X')
as the integral over X of a density (top form) ey constructed from the curvature
of some connection V on X (the Gauss-Bonnet theorem). Likewise, the Euler
number y (£) of some other vector bundle FE over X can be determined in terms
of either a section s of £ or a connection V on E.

A more general formula, obtained by Mathai and Quillen [10], interpolates
between these two classical prescriptions. It relies on the construction of a form
é;.v (E) which depends on both a section s and a connection V. This form has
the property that

2(E) = /é’s,v(E)

X

for all 5 and V. Moreover, this equation reduces to the Hopf or Gauss-Bonnet
theorem for appropriate choice of s (for isolated zeros to the former and to the
latter for s = 0).

What Atiyah and Jeffrey [11] pointed out was that, although ey and [, ey do
not make sense for infinite dimensional E and X, the Mathai—Quillen form ¢ v
can be used to formally define regularized Euler numbers xs(E) of such bundles
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by
4 (E) = /ex,v(E)

X

for certain choices of s. Although not independent of s, these numbers y (L)
are naturally associated with E for natural choices of s and are therefore likely
to be of topological interest.

It is precisely such a representation of topological invariants (in a non-tech-
nical sense #2 ) by functional integrals which is the characteristic property of
topological field theories, and which could also be taken as their definition. This
suggests that certain topological field theories can be interpreted or obtained in
this way. It will be the main aim of these notes to explain that this is indeed
the case for the cohomological theories (i.e. not Chern-Simons theory and its
siblings). The models we consider explicitly are, in addition to supersymmetric
quantum mechanics, Donaldson theory [1] and various theories of flat con-
nections discussed, e.g., in refs. [13-15] and refs. [16-18]. This framework is,
however, broad enough to include topological sigma models, twisted minimal
models, and their coupling to topological gravity as well (see refs. [19,20]).

The following notes consist of three sections, dealing with the Mathai—Quillen
formalism, supersymmetric quantum mechanics, and topological gauge theory,
respectively. Each section begins with a brief review of the required mathemat-
ical background. Thus section 2.1 recalls the classical expressions for the Euler
class and Euler number of a finite dimensional vector bundle. For our present
purposes the Euler number of a vector bundle is best understood in terms of
its Thom class and section 2.2 explains this concept. It also contains the con-
struction of the Gaussian shaped Thom form of Mathai and Quillen and its
descendants e; v. Section 2.3 deals with the application of the Mathai—Quillen
formalism to infinite dimensional vector bundles and their regularized Euler
number and introduces the examples to be discussed in more detail in the sub-
sequent sections.

Section 3.1 contains the bare essentials of the geometry of the loop space
LM of a manifold M necessary to apply the Mathai—Quillen formalism to its
tangent bundle. Section 3.2 explains how supersymmetric quantum mechanics
can be interpreted as defining or arising as a path integral representation of the
regularized Euler number of LM. Some related results like the path integral

#2 What is meant by “topological” in this context is the invariance of numbers like x5 (E) under
deformations of certain of the data entering into its calculation. It is in this sense that the
Donaldson invariants of four-manifolds [12], which arise as correlation functions of the field
theory considered in ref. [1], are topological as they are independent of the metric which
enters into the definition of the instanton moduli space. They are, however, not topological
invariants in the mathematical sense as they have the remarkable property of depending on
the differentiable structure of the four-manifold.
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proofs of the Gauss-Bonnet and Poincaré—Hopf theorems are reviewed in the
light of this derivation. In section 3.3 it is shown that the finite dimensional
Mathai—Quillen form can, in turn, be derived from supersymmetric quantum
mechanics.

Section 4.1 deals with the geometry of gauge theories. We derive an expression
for the curvature form of the principal fibration A — A/G and give a formula
for the Riemann curvature tensor of moduli subspaces M C A/G. We also in-
troduce those infinite dimensional bundles which will enter into the subsequent
discussion of topological gauge theory. In section 4.2 it is shown that the par-
tition function of Donaldson theory can be interpreted as the regularized Euler
number of a bundle of self-dual two-forms over .4/G. It also contains a brief dis-
cussion of some properties of topological field theories in general, as well as some
remarks on the interpretation of observables in the present setting. Topological
gauge theories of flat connections in two and three dimensions are the subject
of section 4.3. In particular, in 3d we sketch the construction of a topological
gauge theory representing the Euler characteristic of the moduli space of flat
connections, once directly from the tangent bundle of .4/G and once from super-
symmetric quantum mechanics on .4/G. We also construct a two-dimensional
analogue of Donaldson theory representing intersection theory on moduli spaces
of flat connections.

The basic references for sections 2.1 and 2.2 are Bott and Tu [21] and Mathai
and Quillen [10]. For section 2.3 see refs. [11] and [17]. The main result
of section 4.2 is due to Atiyah and Jeffrey [11], and a detailed discussion of
Donaldson theory [1,12] can be found in ref. [9, pp. 198-247]. Sections 3.2,
3.3 and 4.3 are based on joint work with George Thompson [16-18]. Further
references can be found in the text and further information on topological field
theory in the cited reviews and the lectures of Danny Birmingham [22] at this
School.

2. The Mathai—Quillen formalism

In section 2.1 we will recall some well known facts and theorems concerning
the Euler class and the Euler number of a finite dimensional vector bundle E.
For our present purposes the Euler class is most profitably understood in terms
of the Thom class of E and we will adopt this point of view in section 2.2. There
we also introduce and discuss at some length the Mathai-Quillen formalism,
which provides, among other things, a concrete differential form realization of
the Thom class. In section 2.3 we explain how the Mathai—Quillen formalism
can be used to define certain regularized Euler numbers of £ when FE is infinite
dimensional. We will also introduce the examples (supersymmetric quantum
mechanics, topological gauge theory) which will then occupy us in the remainder
of these notes.
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2.1. THE EULER NUMBER OF A FINITE DIMENSIONAL VECTOR BUNDLE

Consider a real vector bundle 7 : £ — X over a manifold X. We will assume
that £ and X are orientable, X is compact without boundary, and that the rank
(fibre dimension) of E is even and satisfies rk(E) = 2m < dim(X) = n.

The Euler class of E is an integral cohomology class e(E) € H?*"(X,R) =
H¥ (X).Form = 1 (atwo-plane bundle) ¢ (E) can, e.g., be defined in a rather
pedestrian manner (cf. ref. [21] for the material covered in this and the first
part of the following section). We choose a cover of X by open sets U, and
denote by g.p : U, N Ug — SO(2) the transition functions of E satisfying the
cocycle condition

8o = 8pas  Cap8py = Gay - (2.1)
Identifying SO(2) ~ U(1), we set ¢,p = ilog g,p with
Pap + Py — Qoy € 207, (2.2)
so that dg¢ is an additive cocycle,
de.s + dog, = do,,. (2.3)

In fact, more than that is true. By introducing a partition of unity subordinate
to {U,}, 1.e. a set of functions p, satisfying

D opa=1, supp(ps) C Ua, (2.4)
and defining one-forms &, on U, by &, = (2n) ! >, Py dp,, one finds that

1
Ed%g = &g —&a, (2.5)

which obviously implies (2.3). Thus df, = d&g on the overlaps U, N Uy and
therefore the d&’s piece together to give a global two-form on X which is closed
but not necessarily exact. The cohomology class of this form is independent of
the choice of &’s satisfying (2.5) and is the Euler class ¢(E) € H*(X) of E.

For higher rank bundles a similar construction is possible in principle but
becomes rather unwieldy. Fortunately there are other, more transparent, ways
of thinking about e (E).

The first of these is in terms of sections of E. In general, a twisted bundle will
have no nowhere vanishing non-singular sections and one defines the Euler class
to be the homology class of the zero locus of a generic section of E. Its Poincaré
dual is then a cohomology class in H2" (X ).

The second makes use of the Chern—Weyl theory of curvatures and charac-
teristic classes and produces an explicit representative ey (E) of e (E) in terms
of the curvature Q¢ of a connection V on E. Thinking of Qv as a matrix of

two-forms one has .

v B = Ty

Pf(Q2¢) (2.6)
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where Pf(A) denotes the Pfaffian of the real antisymmetric matrix A,

m
(2m1m! > Caram Ay Adyy aym - (2.7)
satisfying Pf(4)? = det(A4). Standard arguments show that the cohomology
class of ey is independent of the choice of V.

Finally, the third is in terms of the Thom class of E and we will describe this
1n section 2.2.

If the rank of E is equal to the dimension of X (e.g., if E = T X, the tangent
bundle of X ), then H2>"(X) = H"(X) = R and nothing is lost by considering,
instead of e (E), its evaluation on (the fundamental class [X] of) X, the Euler
number

Pf(A4) =

X(E) =e(E)[X]. (2.8)
In terms of the two descriptions of ¢ (E') given above, this number can be ob-
tained either as the number of zeros of a generic section s of £ (which are now
1solated) counted with multiplicity,

X(E)= > wlx) (2.9)

X8 (x,)=0

[here v (xy) is the degree or index of s at x; |, or as the integral

X(E) = [ev(E). (2.10)
/

Of particular interest to us is the case where £ = T X. The Euler number
x (T X) is then equal to the Euler characteristic y (X)) of X,

X(TX) = x(X) =) (=1)*b(X), (2.11)
k

where b, (X) = dim(H* (X)) is the kth Betti number of X. In this context, eqs.
(2.9) and (2.10), expressing x (X ) as the number of zeros of a vector field and
the integral of a density constructed from the Riemannian curvature tensor R x
of X, are known as the Poincaré-—Hopf theorem and the Gauss-Bonnet theorem,
respectively. For example, in two dimensions (n = 2), (2.10) reduces to the
well known formula

1 2
x(X) = E/\/?d xR,
X

where R is the scalar curvature of X.

For E = TX there is also an interesting generalization of (2.9) involving a
vector field V' with a zero locus X which is not necessarily zero dimensional.
Denoting the connected components of X by Xl(,k), this generalization reads

(X)) =30 (x). (2.12)
k
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This reduces to (2.9) when the XI(/k) are 1solated points and is an identity when
V' 1s the zero vector field.

One of the beauties of the Mathai—Quillen formalism, to be discussed next, is
that it provides a corresponding generalization of (2.10), 1.e. an explicit differ-
ential form representative e; v of e (E') depending on both a section s of £ and
a connection V on E such that

2 (E) = /(’s.v(E) (2.13)

X

and such that (2.13) reduces to any of the above equations for the appropriate
choice of £ and s [i.e., to (2.10) if s is the zero section, to (2.9) when the zeros
of s are isolated, and to (2.12) for a general vector field on TX].

If n > 2m, then we cannot evaluate ¢(E) on [X] as in (2.8). We can, how-
ever, evaluate it on homology 2m-cycles or (equivalently) take the product of
¢(E) with elements of H"=?" (X ) and evaluate this on [X]. In this way one
obtains intersection numbers of X associated with the vector bundle E. A cor-
responding interpretation of the Donaldson polynomials [12] as observables in
the topological gauge theory of ref. [1] has been given by Atiyah and Jeffrey ref.
[11] (cf. section 4.2).

2.2. THE THOM CLASS AND THE MATHAI-QUILLEN FORM

The Euler class e (E') has the property that it is the pullback of a cohomology
class on FE, called the Thom class @ (E) of E, via the zero section i : X — E,

e(E)y =i"d(E). (2.14)

We will show this explicitly below [cf. egs. (2.33), (2.34)]. To understand
the origin and significance of @ (E), recall that there are two natural notions of
cohomology for differential forms on a vector bundle E over a compact manifold
X: ordinary de Rham cohomology H*(F) and compact vertical cohomology
H{, (E). The latter deals with forms whose restriction to any fibre has compact
support. As E is contractible to X one has

H*(E)~ H"(X). (2.15)

On the other hand, as the compact cohomology of a vector space only has a
generator in the top dimensions (a “bump” volume form with unit volume),
one has

H(E) ~ H7MM(X). (2.16)
More technically, for forms of compact vertical support one has the notion of

“push-down” or “integration along the fibres”, denoted by 7. In local coordi-
nates, and for trivial bundles, this is the obvious operation of integrating over
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the fibres the part of w € 2, (F) (the space of forms with compact vertical sup-
port) which contains a vertical 2m-form and interpreting the result as a form
on X. This prescription gives a globally well defined operation

T Q4(E) = QM (X). (2.17)
In particular, for any w € Q% (E) and o € 2*(X) one has
. ((n*0)w) = an,w. (2.18)

. commutes with the exterior derivatives on E and X (it is sufficient to check
this in local coordinates),
ndr = dym., (2.19)

and induces the so called Thom isomorphism T : H*(X) — HC*V”’" (E), eq.
(2.16). Under this isomorphism, the generator | € H%(X) corresponds to a
2m-dimensional cohomology class on E, the Thom class @ (E),

D(E) = T (1) e HYI'(E). (2.20)

By definition, @ (E) satisfies 7. @ (F) = 1, so that by (2.18) the Thom isomor-
phism is explicitly given by

Tela) = ()@ (F). (2.21)

After this small digression let us now return to the Euler class ¢ (E) and eq.
(2.14). As any two sections of £ are homotopic as maps from X to E, and as
homotopic maps induce the same pullback map in cohomology, we can use any
section s of E instead of the zero section to pull back @ (F) to X and still find

S*Q(E) =e(E). (2.22)

The advantage of this way of looking at the Euler class e (E) should now be
evident: provided that we can find an explicit differential form representative
Dy (E) of @ (FE), depending on a connection V on E, we can pull it back to X
via a section § to obtain a 2m-form

esv(E) = 57Dy (L) (2.23)

representing the Euler class e (E') and (if n = 2m) satisfying (2.13). It should
be borne in mind, however, that by (2.22) all these forms are cohomologous
so that this construction, as nice as it is, is not very interesting from the co-
homological point of view. To get something really new one should therefore
consider situations where the forms (2.23) are not necessarily cohomologous to
ey. As pointed out by Atiyah and Jeffrey [11], such a situation occurs when one
considers infinite dimensional vector bundles where ey (an “infinite-form™) is
not defined at all. In that case the added flexibility in the choice of s becomes
crucial and opens up the possibility of obtaining well defined, but s-dependent,
“Euler classes” of E. We will explain this in section 2.3.
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To proceed with the construction of @y, let us make two preliminary remarks.
The first is that for explicit formulae it is convenient to switch from working
with forms with compact support along the fibres to working with “Gaussian
shaped” forms rapidly decreasing along the fibres (in a suitable technical sense).
Everything we have said so far goes through in that setting [10] and we will
henceforth replace Q7 (E) by £ (E) etc. '

The second is that Pfaffians (2.7) arise as fermionic (Berezin) integrals (this
may sound like a rather mysterious remark to make at this point, but is of course
one of the reasons why what we are going through here has anything to do with
supersymmetry and topological field theory). More precisely, if we have a real
antisymmetric matrix (A4, ) and introduce real Grassmann odd variables x4,
then

Pf(4) = /d;( exp(x®Aapx?/2). (2.24)
In particular, we can therefore write the form ey (2.6) as
ev(E) = m)~™ / dy exp (1a Q8 /2). (2.25)

The idea is now to extend the right hand side of (2.25) to a form @¢ (E) on E
having Gaussian decay along the fibres and satisfying 7. @¢ (E) = 1.

Regarding F as a vector bundle associated to a principal G bundle P with stan-
dard fibre F, E = P x¢ F, we can represent forms on E by basic, i.e. horizontal
and G-invariant, forms on P x F,

Q*(E) = (P x F) (2.26)

and sections of E by G-equivariant maps from P to F. Moreover, via the
projection 7 : P — X, E pulls back to the canonically trivial vector bundle
n*E = P x F over P whose induced connection and curvature we also denote
by V and Qv. With this identification understood, the Thom form @ (E£) of
Mathai and Quillen is given by

Dy (E) = (ZN)‘me‘éz/z/dx exp(XaQ%x/2 + iVEYL), (2.27)

where we have chosen a fixed fibre metric on F, £% are coordinates on F and
V&2 is the exterior covariant derivative of &4, a one-form on P x F. We now
check that @ (£') really represents the Thom class of E.

First of all, integrating out y one sees that (2.27) defines a 2m-form on P x F.
This form is indeed basic and represents a closed 2m-form on E. G-invariance
and horizontality are almost obvious from (2.27) as Qv and V¢ are horizontal
(by the definition of the covariant extertor derivative). Less evident is the fact
that @y (E) 1s closed. This is best understood in terms of the equivariant coho-
mology H: (F') of F (cf. sections 5 and 6 of ref. [10]) and is related to the fact
that the exponent in (2.27),

—E2)2 + xaR8x /2 + 1VEY 4, (2.28)
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is invariant under the graded (i.e. super-)symmetry
5Xa = iéda déa = Véa’ (229)

mapping the Grassmann odd y to the even & and & to the Grassmann odd one-
form V¢&. “On shell”, i.e. using the ¥ equation of motion iVE4 = Q%bxb, this
supersymmetry squares to rotations by the curvature matrix Qv

Pyt = Q&%y,, 0% = Q& (2.30)

which is the hallmark of equivariant cohomology. For a more thorough discus-
sion of the relation between the classical (Cartan-, Weyl-) models of equivariant
cohomology and the BRST model, as well as of the Mathai—Quillen formalism
in that context, see ref. {23].

By introducing a Grassmann even scalar field B, with éy, = B, and B¢ =
Q%b)(b the “action” (2.28) becomes d-exact off-shell,

(2.28) =y, (il — B9/2). (2.31)

It is of course no coincidence that the structure we have uncovered here is
reminiscent of topological field theory, see, e.g., (3.11), (4.20) below.

Because of the factor e=¢"/2, (2.27) is certainly rapidly decreasing along the
fibre directions. What remains to be checked to be able to assert that @¢ (F)
represents the Thom class @ (F) 1s that n,@v (E£) = 1 or, under the 1somor-
phism (2.26), that [, &y (E) = 1. Extracting from the 2m-form @g (E) the
part which is a 2m-form on F we find that indeed

1 a . 2m
[oote) = mn [ [ g G422
ye .

2m!
F
- (zn)*m/erfz/2 acl..dEm = 1. (2.32)
7
This proves that
(Do (E)] =(D(E)6Hr2dm(E). (2.33)

We now take a closer look at the forms s*@v (L) = e;v(E), eq. (2.23),
for various choices of s. In our notation e; v (E) is obtained from (2.27) by
replacing the fibre coordinate & by s(x). The first thing to note is that for the
zero section /, (2.27) reduces to (2.25) and therefore

ev(E) = "Dy (E). (2.34)

This is a refinement of (2.14) to an equality between differential forms and
therefore, in particular, finally proves (2.14) itself.

If n = 2m and s is a generic section of E transversal to the zero section, then
we can calculate [, e, v (E) by replacing s by ys for y € R and evaluating the
integral in the limit y — oc. In that limit the curvature term in (2.27) will not
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contribute and one can use the stationary phase approximation to reduce the
integral to a sum of contributions from the zeros of s, reproducing eq. (2.9).
The calculation is entirely analogous to similar calculations in supersymmetric
guantum mechanics (see, e.g., ref. [9]) and I will not repeat it here. In fact, as
we will later derive the Mathai—Quillen formula (2.27) from supersymmetric
quantum mechanics (section 3.3), this shows that the required manipulations
are not only entirely analogous to but identical with those in supersymmetric
quantum mechanics. As we could equally well have put y = 0 in the above, this
also establishes directly the equality of (2.9) and (2.10).

Finally, if E = T X and V is a non-generic section of X with zero locus Xy,
the situation is a little bit more complicated. It turns out that in this case / x eV
can be expressed in terms of the Riemann curvature tensor Ry, of Xyr. Here Ry,
arises from the data Ry and V entering eyy via the Gauss-Codazzi equations.
Quite generally, these express the curvature Ry of a submanifold Y C X in terms
of Ry and the extrinsic curvature of Y in X (we will recall these equations in
section 4.1). Then eq. (2.12) is reproduced in the present setting in the form
(we assume that X, is connected—this is for notational simplicity only)

x(X) = /em = (2n)‘dim(XV)/2/Pf(RXV). (2.35)
Xy

X

Again the manipulations required to arrive at (2.35) are exactly as in super-
symmetric quantum mechanics [17,18] and we will perform such a calculation
in the context of topological gauge theory in section 4.3 [see the calculations
leading to (4.31)].

2.3. THE MATHAI-QUILLEN FORMALISM FOR INFINITE DIMENSIONAL VECTOR
BUNDLES

Let us recapitulate briefly what we have achieved so far. Using the Mathai-
Quillen form @y (E), eq. (2.27), we have constructed a family of differential
forms e, v (£) parametrized by a section s and a connection V and all repre-
senting the Euler class e(E) € H**(X). In particular, for E = T X, the equa-
tion y(X) = fx ev.v (X ) interpolates between the classical Poincaré-Hopf and
Gauss—Bonnet theorems.

To be in a situation where the forms e, v are not necessarily all cohomologous
to ey, and where the Mathai-Quillen formalism thus “comes into its own” [11],
we now consider infinite dimensional vector bundles. To motivate the concept
of a regularized Euler number of such a bundle, to be introduced below, recall
eq. (2.12) for the Euler number y (X) of a manifold X, which we repeat here
for convenience in the form

X (X) = x(Xy). (2.36)
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When X is finite dimensional this is an identity, while its left hand side is not
defined when X is infinite dimensional. Assume, however, that we can find a
vector field V' on X whose zero locus is a finite dimensional submanifold of X.
Then the right hand side of (2.36) is well defined and we can use it to tentatively
define a regularized Euler number yy (X) as

xv(X) = x(Xy). (2.37)

By (2.13) and the standard localization arguments, as reflected, e.g., in (2.35),
we expect this number to be given by the (functional) integral

(X)) = /eV,v(X). (2.38)
X

This equation can (formally) be confirmed by explicit calculation. The idea is
again to replace V' by yV, so that (2.38) localizes to the zeros of V' as y — oc,
and to show that in this limit the surviving terms in (2.28) give rise to the
Riemann curvature tensor of X, expressed in terms of R y and V' via the Gauss—
Codazzi equations. A rigorous proof can probably be obtained in some cases by
probabilistic methods as used, e.g., by Bismut [24,25] in related contexts. We
will, however, content ourselves with verifying (2.38) in some examples below.

More generally, we are now led to define the regularized Euler number y(F)
of an infinite dimensional vector bundle E as

4 (E) = /es,v(E)- (2.39)
X

Again, this expression turns out to make sense when the zero locus of s is a finite
dimensional manifold X;, in which case y;(F) is the Euler number of some
finite dimensional vector bundle over X; (a quotient bundle of the restriction
E|x,, cf. refs. {19,20]).

Of course, there is no reason to expect xs;{E) to be independent of s, even
if one restricts one’s attention to those sections s for which the integral (2.39)
exists. However, if s is a section of E naturally associated with E (we will see
examples of this below), then y(F) is also naturally associated with F and can
be expected to carry interesting topological information. This is indeed the case.

It is precisely such a representation of finite dimensional topological invari-
ants by infinite dimensional integrals which is the characteristic property of
topological field theories. It is then perhaps not too surprising anymore at this
point, that topological field theory actions can be constructed from (2.28) for
suitable choices of X, E, and s.

Here is a survey of the examples we will discuss in a little more detail in the
following sections (LM denotes the loop space of a manifold M and 4%/G* a
space of gauge orbits in k dimensions).
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Example 1. X = LM, E = TX,V = x (section 3.2). (2.28) becomes the
standard action S)s of de Rham supersymmetric quantum mechanics and

/eV,v (LM) = Z(SM) (2.40)
LM

is the partition function of Sys. The zero locus (LM )y of V is the space of
constant loops, i.e., (LM )y ~ M. We therefore expect (2.40) to calculate

xv(LM) = x(M). (2.41)

As this indeed agrees with the well known explicit evaluation of Z (Sy) in the
form

Z(Sy) = (2n)—dim<M>/2/Pf(RM), (2.42)
M

this is our first confirmation of (2.39). Conversely the Mathai—-Quillen formal-
ism now provides an understanding and explanation of the mechanism by which
the (path) integral (2.40) over LM localizes to the integral (2.42) over M.

Instead of the vector field x one can also use x + W', where W' denotes the
gradient vector field of some function W on M. By an argument to be introduced
in section 3 (the “squaring argument”) the zero locus of this vector field is the
zero locus of W/ on M (i.e., x = W’ = 0), whose Euler number is the same as
that of M by (2.36),

xv(LM) = x(Mw') = x(M). (2.43)

Again this agrees with the explicit evaluation of the path integral of the corre-
sponding supersymmetric quantum mechanics action.

Example 2. X = A%/G* E = £,,5 = (F4), (section 4.2). (£, is a certain
bundle of self-dual two-forms over A*/G* and (F,), is the self-dual part of the
curvature F4 of A.) The zero locus X; is the moduli space M; of instantons, and
not unexpectedly the corresponding action is that of Donaldson theory [12,1].
The partition function y (£, ) is what is known as the first Donaldson invariant
and is only non-zero when d(M) = dim(M;) = 0. If d(M) # 0 then one
has to insert elements of H¢*) (A*/G*) into the path integral in the manner
explained at the end of section 2.1 to obtain non-vanishing results (the Donald-
son polynomials). This interpretation of Donaldson theory is due to Atiyah and
Jeffrey [11].

Example 3. X = A3/G3 E = TX, V = xF,4 (section 4.3). (+ is the Hodge
operator, and the one-form *F, defines a vector field on 43/G3, the gradient
vector field of the Chern-Simons functional.) The zero locus of V' is the moduli
space M3 of flat connections and the action coincides with that constructed in
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refs. [13,14,17]. Again one finds full agreement of
xv(AYGH) = x(Mm?) (2.44)

with the partition function of the action, which gives y (M?3) in the form (2.35),
i.e. via the Gauss—Codazzi equations for the embedding M3 ¢ A3/G3. In ref.
[11] this partition function was first identified with a regularized Euler number
of A3/G3. We have now identified it more specifically with the Euler number
of M3. In ref. [26] it was shown that for certain three-manifolds (homology
spheres) y (A3/G3) is the Casson invariant. Hence our considerations suggest
that the Casson invariant can be defined as y (M?3) for more general three-
manifolds [17].

Example 4. X = L(A3/G?),E = TX,V = A++F, (section 4.3). This is super-
symmetric quantum mechanics on 43/G? and in a sense a combination of all the
three above examples. The resulting (non-covariant) gauge theory actionin 3 + 1
dimensions is that of Donaldson theory (example 2). After partial localization
from L(A%/G?) to .A%/G* it is seen to be equivalent to the action of example
3. Further reduction to the zeros of the gradient vector field xF, (example 1)
reduces the partition function to an integral over M3 and calculates y (M?).
This again confirms the equality of the left and right hand sides of (2.38). The
reason why Donaldson theory is related to instanton moduli spaces in example
2, but to moduh spaces of flat connections in this example is explained in ref.
[17].

3. The Euler number of loop space and supersymmetric quantum mechanics

In this section we will work out some of the details of example 1. We begin
with a (very) brief survey of the geometry of loop space (section 3.1). We then
apply the Mathai—Quillen formalism to the tangent bundle of loop space, derive
supersymmetric quantum mechanics from that, and review some of the most
important features of supersymmetric quantum mechanics in the light of this
derivation (section 3.2). Finally, to complete the picture, we explain how the
finite-dimensional Mathai—Quillen form (2.27) can be derived from supersym-
metric quantum mechanics (section 3.3).

3.1. LOOP SPACE GEOMETRY

We denote by M a smooth orientable Riemannian manifold with metric g
and by LM the loop space of M, i.e. the space of smooth maps from the circle
Stto M,

LM = C>(S', M) (3.1)
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(consistent with the sloppiness to be encountered throughout these notes we will
not worry about the technicalities of infinite dimensional manifolds). Elements
of LM are denoted by x(¢) or x#(t), where t € [0,1], x*# are (local) coordi-
nates on M and x#(0) = x#(1). In supersymmetric quantum mechanics it is
convenient to scale ¢ such that ¢ € [0, ] and x#(0) = x#(f) for some f € R,
and to regard £ as an additional parameter (the inverse temperature) of the
theory.

A tangent vector to a loop x (¢) can be regarded as an infinitesimal variation of
the loop. As such it can be thought of as a vector field on the image x (S') c M
[tangent to M but not necessarily to the loop x(S') ]. In other words, the tangent
space T, (LM) to LM at the loop x(t) is the space of smooth sections of the
tangent bundle 7'M restricted to the loop x (1),

T (LMY ~ T (x*(TM)). (3.2)
There is a canonical vector field on LA which generates rigid rotations x (1) —

x{t + ¢) of the loop around itself. It is given by V(x)(¢) = x(¢) (or V = x
for short). The metric g on M induces a metric g on LM through

1
G (V. V3) = /dz G (XOIVE 0 (D (X) (1) . (3.3)
0
Likewise, every p-form « on M gives rise to a p-form « on LM via
1
ax(Visenn s V) =/dzax<,>(Vl<x)(z>,...,V,,(x><z)>, (3.4)
0

and a local basis of one-forms on LM is given by the differentials dx*(¢).

The last piece of information we need is that the Levi-Civita connection on
M can be pulled back to S! via a loop x(¢). This defines a covariant derivative
on (3.2) and its dual, which we denote by V;. We have, e.g.,

(V V) (x)(t) = (d/d)VE(x) (1) + T (x (0))x" (VP (x) (). (3.5)

3.2. SUPERSYMMETRIC QUANTUM MECHANICS

We are now in a position to discuss example 1 of section 2.3 in more detail.
In the notation of that section, we choose X = LM, E = TX,and V = x.
The anticommuting variables y, thus parametrize the fibres of T X and we write
them as y, = e/'W,, where e/ is the inverse vielbein corresponding to g
Using the metric (3.3) as a fibre metric on 7, X, the first term of (2.28) is
simply the standard bosonic kinetic term of quantum mechanics ,

B
E22 /dt S X* X" /2. (3.6)
0
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To put the remaining terms into a more familiar form, we use the standard trick
of replacing the differentials dx#(¢) by periodic anticommuting variables,

dx# (1) — y* (1), (3.7)

and integrating over them as well. As the integral over the s will simply pick out
the top-form part, which is then to be integrated over X [cf. (2.39)], nothing is
changed by the substitution (3.7). With all this in mind the complete exponential
of the Mathai-Quillen form ey v (LM ) becomes

B
Sy = /dz [~ 8uX 5" /2 + RY T, WP, w04 — 7,V w] . (3.8)
]

This is precisely the standard action of de Rham (or N = 1) supersymmet-
ric quantum mechanics to be found, e.g., in refs. [27-31] (with the spinors
appearing there decomposed into their components; we also choose w and ¥ to
be independent real fields instead of complex conjugates). It will be convenient
to introduce a multiplier field B, and to rewrite the action (3.8) in first order
form,

B
Sy = /dt [LX4B, + g BuB,/2 + R*,0,w"T,w° /4 — 7,V wh]. (3.9)
0

The supersymmetry of this action is

6)(# = l//'u 5 57}1 = Bll _FZ/)WVV//)’

Swh =0, OBy =T4By" Ry W,w'vw/2. (3.10)

This is readily verified by noticing that 62 = 0 and that (3.9) can itself be
written as a supersymmetry variation,

B
Sy = 6/dt (7, (ix* + "' B,[2)]. (3.11)
0

Note the similarity with (2.31). Reinterpreting J as a BRST operator, this also
shows that the sector of supersymmetric quantum mechanics annihilated by ¢
1s topological (a BRST exact action being one of the hallmarks of topological
field theory). As we will see below that only ground states contribute to the
partition function anyway, it is, in particular, independent of the coefficient of
the second term of (3.11) regardless of whether we treat 6 as a conventional
supersymmetry operator (mapping bosonic to fermionic states and vice versa)
or as a BRST operator (annihilating physical states). Rescaling this term by a
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real parameter o we find the equivalent action
B
Sy = /dt [~ g X"5¥ /20 + R WPT, W[4 — T, Vt].  (3.12)
0

On the other hand, if we rescale the time variable by f we obtain the action
(3.12) with foﬂ dt replaced by fol d¢ and o replaced by 8. Thus the “topolog-
ical” a-independence translates into the quantum mechanical #-independence.
Conversely, this S-independence is obvious from the standard Hamiltonian con-
struction of supersymmetric quantum mechanics (cf. below) and translates into
the topological a-independence of (3.12).

This is not the place to enter into a detailed discussion of supersymmetric
quantum mechanics, and we will in the following focus on those aspects rele-
vant for the Mathai-Quillen side of the issue and our subsequent considerations
involving topological gauge theories. For detailed discussions of supersymmetric
quantum mechanics in the context of index theory and topological field theory
the reader is referred to ref. [30] and ref. [9, pp. 140-176]}, respectively.

Our discussion of the Mathai—-Quillen formalism suggests that the partition
function Z (Sy) of the supersymmetric quantum mechanics action Sy, eq.
(3.8), with periodic boundary conditions on all the fields, is the Euler num-
ber x (M) of M [as yy (LM) = y((LM)y) = x (M), cf. (2.37)-(2.41)]. As
1s well known, this is indeed the case.

The conventional way to see this (if one does not yet trust the infinite dimen-
sional version of the Mathai-Quillen formalism) is to start with the definition
of y (M) as the Euler characteristic of M, eq. (2.11). As there is a one-to-one
correspondence between cohomology classes and harmonic forms on M (more
precisely, there is a unique representative in every de Rham cohomology class
which is annihilated by the Laplacian 4 = dd* + d*d) one can write ¥ (X)) as
a trace over the space Ker 4,

X (M) = trgec a (1), (3.13)

where (=1)fis +1 (—1) oneven (odd) forms. As the operator d + d* commutes
with 4 and maps even to odd forms and vice versa, there is an exact pairing
between “bosonic” and “fermionic” eigenvectors of 4 with non-zero eigenvalue.
It is thus possible to extend the trace in (3.13) to a trace over the space of all
differential forms,

(M) =trg.(=1)Fe= 54 (3.14)
As only the zero modes of 4 will contribute to the trace, it is evidently indepen-
dent of the value of 8. Once one has put ¥ (M) into this form of a statistical
mechanics partition function, one can use the Feynman-Kac formula to repre-
sent it as a supersymmetric path integral [30] with the action (3.8), imaginary
time of period £ and periodic boundary conditions on the anticommuting vari-
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ables w# [due 1o the insertion of (—1)f]. Conversely, a Hamiltonian analysis
of the action (3.8) would tell us that we can represent its Hamiltonian by the
Laplacian 4 on differential forms [28] and, tracing back the steps which led us
to (3.14), we would then again deduce that Z (Sy;) = x (M), as anticipated in
(2.40).

This Hamiltonian way of arriving at the action of supersymmetric quantum
mechanics should be contrasted with the Mathai-Quillen approach. In the for-
mer one starts with the operator whose index one wishes to calculate (e.g. d +d*),
constructs a corresponding Hamiltonian, and then deduces the action. On the
other hand, in the latter one begins with a finite dimensional topological invari-
ant [e.g. x (M) ] and represents that directly as an infinite dimensional integral,
the partition function of a supersymmetric action.

What makes such a path integral representation of y (M) interesting is that
one can now go ahead and try to somehow evaluate it directly, thus possibly
obtaining alternative expressions for y (M). Indeed, one can obtain path integral
“proofs” of the Gauss-Bonnet and Poincaré-~Hopf theorems in this way. This is
just the infinite dimensional analogue of the considerations of section 2.2, where
different choices of s in fx e5.v (E) lead to different expressions for x (£). As
we will derive the finite dimensional Mathai-Quillen form from supersymmetric
quantum mechanics in section 3.3 we can appeal to the manipulations of section
2.2 to complete these “proofs”. However, it is also instructive to perform these
calculations directly. Before indicating how this can be done, we will need to
introduce a generalization of the action (3.8) which arises when one takes the
section x* + yg# 0, W of T(LM) (cf. example | of section 2.3) to regularize
the Euler number of LM . Here W is a function (potential) on M and y is yet
one more arbitrary real parameter. In that case one obtains [introducing also
the parameter « of (3.12)]

5
Suw = /dr (54 + 7840, W (x)) By + g™ BuB, |2
0

+ aRY T WP W[4 — W (BN + gV ,0, W)y "] .(3.15)

From the Hamiltonian point of view this action arises from replacing the exterior
derivative d by
d—dyw =e " de’™, (3.16)

and applying the above procedure to the corresponding Laplacian 4,y-. As there
is a one-to-one correspondence between 4- and 4, -harmonic forms, this also
represents y (M) (independently of the value of y).

This freedom in the choice of parameters «, 8, y greatly facilitates the eval-
uation of the partition function. Let us, for example, choose & = 0 in (3.15).
Then the curvature term drops out completely and the B-integral will simply
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give us a delta function constraint x# 4+ yg#*9, W = 0. Squaring this equation
and integrating it over ¢ one finds

xt 4+ yg®o,W =0
8
- /dt Gu XM 4 Y2 g O, WO, W + 2yxFa,W =0
0

—xF=0=0,W, (3.17)

as the second line is the sum of two non-negative terms and a total derivative.
This is the “squaring argument” referred to in section 2.3. It demonstrates that
the path integral over LM is reduced to an integral over M (by x# = 0) and
further to an integral over the set My of critical points of W (and analogously
for the ¥’s by supersymmetry). When the critical points are isolated, inspection
of (3.15) immediately reveals that the partition function is

X(M)=Z(Suw)= > sign(detHy (W)), (3.18)
Xp:dW (x;,=0)
where
Hy (W) = (Vu0, W) (xi) (3.19)

is the Hessian of W at x;. This is the Poincaré-Hopf theorem (2.9). This result
can also be derived by keeping « non-zero and taking the limit y — oc instead,
which also has the effect of localizing the path integral around the critical points
of W because of the term y2W'? in the action.

If we switch off the potential, then we cannot simply set « = 0 in (3.15),
as the resulting path integral would be singular due to the undamped bosonic
and fermionic zero modes. In that case, the limit @« — 0 or f# — 0 has to be
taken with more care. Since whatever we can do with a we can also do with S,
let us set & = 1 in the following. We first rescale the time coordinate ¢ by f,
and then we rescale B and ¥ by Y2, B — B'/2B and ¥ — B'/%7, and all the
non-zero modes of x and y by g~ /2. This will leave the path integral measure
invariant and has the effect that all the f#-dependent terms in the action are at
least of order O($!/2) and the limit # — O can now be taken with impunity.
The integral over the non-constant modes gives 1 and the net effect of this is
that one is left with a finite-dimensional integral of the form (2.25), namely

101 ~ [ax [av [ a7 exo(RS,w,007 0714) (3.20)

over the constant modes of x, y, and ¥ of which there are dim(A) each. In
order to get a non-zero contribution (1.e. to soak up the fermionic zero modes)
one has to expand (3.20) to (dim(AM')/2)th order, yielding the Pfaffian of Ry,
and hence, upon integration over M (the x zero modes) the Gauss—Bonnet
theorem (2.6), (2.10). (3.20) also gives the correct result for odd dimensional
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manifolds, y (M) = 0, as there is no way to pull down an odd number of ¥’s
and ¥’s from the exponent.

If the critical points of W are not isolated, then, by a combination of the
above arguments, one recovers the generalization y (M) = y (My),eqs. (2.12),
(2.43), of the Poincaré—Hopf theorem in the form (2.35).

As this treatment of supersymmetric quantum mechanics has admaittedly been
somewhat sketchy I should perhaps, summarizing this section, state clearly what
are the important points to keep in mind:

(i) The Mathai—Quillen formalism applied to the loop space LM of a Rie-
mannian manifold M leads directly to the action of supersymmetric quantum
mechanics with target space M. Different sections lead to different actions, and
those we have considered all regularize the Euler number of LM to be y (M).

(i1) Explicit evaluation of the supersymmetric quantum mechanics path inte-
grals obtained in this way confirms that we can indeed represent the regularized
Euler number y (LM ), as defined by (2.37), by the functional integral (2.38).

(i11) Finally, I have argued (although not proved in detail ) that the zero modes
are all that matter in supersymmetric quantum mechanics, the integral over
the non-zero modes giving 1. This observation is useful when one attempts to
construct topological gauge theories from supersymmetric quantum mechanics
on spaces of connections (see ref. [18] and the remarks in section 4.3).

3.3. THE MATHAI-QUILLEN FORM FROM SUPERSYMMETRIC QUANTUM
MECHANICS

So far we have derived the action of supersymmetric quantum mechanics by
formally applying the Mathai-Quillen formalism to LM, and we have indicated
how to rederive the classical (generalized) Poincaré~Hopf and Gauss-Bonnet
formulae. What is still lacking to complete the picture is a derivation of the
general (finite dimensional) Mathai-Quillen form @¢ (E), eq. (2.27), for £ =
TM from supersymmetric quantum mechanics.

As @y (T M) can be pulled back to M via an arbitrary vector field (section of
T M) v, not necessarily a gradient vector field, we need to consider the supersym-
metric quantum mechanics action resulting from the regularizing section x + yv
of T(LM). This is just the action (3.15) with 9, W replaced by g,.v*. In that
case the squaring argument, as expressed in (3.17), fails because the cross-term
will not integrate to zero. In the limit y — oo the path integral will nevertheless
reduce to a Gaussian around the zero locus of v because of the term y2g,, v v"
in the action, and in this limit the path integral calculates x (M) = x(M,) in
the form (2.35).

To derive the Mathai—Quillen form, however, we are interested in finite values
of 7. Thus, what we need to do now is adjust the parameters in such a way that
the zero modes of all the terms involving the vector field v or the curvature
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survive. Proceeding exactly as in the derivation of the Gauss-Bonnet theorem
one ends up with a time-independent “action” of the form

B*/2 + yv*By + R¥,sW, W,y v’ /4 —iyw NV, vty”, (3.21)

which—upon integration over B—reproduces precisely the exponent (2.28) of
the Mathai—Quillen form (2.27) with &2 replaced by the arbitrary section yv#* or
yes vt of TM. We have thus also rederived the Mathai—Quillen formula (2.13)
for TM,

200 = [ene(TM), (3.22)

M
from supersymmetric quantum mechanics. Specializing now tov = Oor v a
generic vector field with isolated zeros again reproduces the classical expressions.

4. The Euler number of vector bundles over .4/G and topological gauge theory

In this section we essentially work out the details of examples 2 and 3 and
discuss some related models as well. Section 4.1 contains a brief summary of the
facts we will need from the geometry of gauge theories. In section 4.2 we will
see how Donaldson theory can be interpreted in terms of the Mathai—Quillen
formalism. Section 4.3 sketches the construction of a topological gauge theory
in 3d from the tangent bundle over or (alternatively) supersymmetric quantum
mechanics on gauge orbit space which represents the Euler characteristic of the
moduli space of flat connections. It also contains a brief discussion of the 2d
analogue of Donaldson theory.

4.1. GEOMETRY OF GAUGE THEORIES

Let (M, g) be a compact, oriented, Riemannian manifold, # : P — M a
principal G bundle over M, G a compact semisimple Lie group and g its Lie
algebra. We denote by A the space of (irreducible) connections on P, and by G
the infinite dimensional gauge group of vertical automorphisms of £ (modulo
the center of ). Then G acts freely on A and

IT:A— AJG (4.1)

is a principal ¢ bundle. The aim of this section will be to determine a connection
and curvature on this principal bundle, so that we can write down (or recognize)
the Mathai-Quillen form for some infinite dimensional vector bundles associ-
ated to it. We will also state the Gauss—Codazzi equations which express the
Riemann curvature tensor R »¢ of some moduli subspace M of A/G in terms of
the curvature of .4/G and the extrinsic curvature (second fundamental form) of
the embedding M — A4/G. The details can be found, e.g., in refs. [32-35].
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Continuing with notation, we denote by Q* (A, g) the space of k-forms on M
with values in the adjoint bundle ad P := P x,4 g and by

dy: QK(M,g) — Q¥+ (M, g), (4.2)

the covariant exterior derivative with curvature (d4)? = F4 The spaces
Q% (M,g) have natural scalar products defined by the metric g on M (and
the corresponding Hodge operator *) and an invariant scalar product tr on g,
namely

(X,Y) =/tr(X*Y), X, Y e QKM g) (4.3)
M

(I hope that occasionally denoting these forms by X as well will not give rise to
any confusion with the manifold X of section 2). The tangent space 7,44 to A
at a connection A can be identified with 2! (M, g) [as A is an affine space, two
connections differing by an element of Q! (M, g)]. Equation (4.3) thus defines
a metric g4 on A. The Lie algebra of G can be identified with 2° (A, g) and acts
on A € A via gauge transformations,

A—A+dsa, A4eQ%M,g), (4.4)

so that d44 is the fundamental vector field at A corresponding to A. At each
point A € A, T4A can thus be split into a vertical part 1, = Im{(d4) (tangent
to the orbit of G through 4) and a horizontal part H; = Ker(d}) (the orthogo-
nal complement of V), with respect to the scalar product (4.3)). Explicitly this
decomposition of X € 2! (M, g) into its vertical and horizontal parts is

X = dGY%d3 X + (X - d, G X)
= v X + hyX, (4.5)
where G% = (djd4)" is the Green function of the scalar Laplacian (which
exists if 4 is irreducible). We will identify the tangent space 7 4].4/G with H,

for some representative A4 of the gauge equivalence class [A4].
Then g4 induces a metric g4,g on A/G via

8ag(UXLIY]) = galhaX, haY), (4.6)
where X, Y € Q1(N,g) projectto [X],[Y] € T141A/G. With the same notation

the Riemannian curvature of A/G 1s
Rag(UXLIYDIZ], [W])
= (#[haX, shyW ], G % [haY,xhyZ]) — (X = ¥)
+2(x [hg W, xh4Z ), GG x [haX, xhaY]). (4.7)

If M is some embedded submanifold of 4/G, then (4.6) induces a metric ga
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on M whose Riemann curvature tensor is

Rm(IXLIYDIZ], W]
= (Rac (XL IYDIZ] [W])
+ (K ([Y L [Z]), Km ([X], [W]) = (X <= Y)), (4.8)
where K 1s the extrinsic curvature (or second fundamental form) of M in

A/G. For instanton moduli spaces K1, has been computed in ref. [35] and for
moduli spaces of flat connections in two and three dimensions one finds [17]

K (XL YD) = ~dyGA1X 4,V 4]. (4.9)

Here the tangent vectors [ X' ] and [Y ] to M are represented on the right hand
side by elements X and Y of Q! (M, g) satisfying both the horizontality condition
d*X = d3Y = 0and the linearized flatness equationd4X = d4Y = 0.G%isthe
Green function of the Laplacian on two-forms and in the three dimensional case
we think of it as being composed of a projector onto the orthogonal complement
of the zero modes of the Laplacian. Thus

(Km(IYLIZD K (IXL WD) = ([Y 4. Z4). GRIX . W4])  (4.10)

and together with (4.7) and (4.8) this determines R x4 entirely in terms of Green
functions of differential operators on M. It is in this form that we will encounter
R aq In section 4.3,

The decomposition (4.5) also defines a connection on the principal bundle
A — A/G itself, with connection form 6.4 = G%d. Indeed, .4 can be regarded
as a Lie algebra (= Q%(M,g)) valued one-form on A,

0./4 : TAA - QO(‘Mﬂg)a
X — 04(X) = GY%X. (4.11)

It transforms homogenously under gauge transformations, is obviously vertical
[i.e., vanishes on Ker(d'}) ], and assigns to the fundamental vector field d 4/ the
corresponding Lie algebra element

O4(dyA) = GOdid A = A, (4.12)
as behoves a connection form. Its curvature is the horizontal two-form
9A=dA9A+%[9.A,9A] (4.13)

(d 4 denotes the exterior derivative on A). Evaluated on horizontal vectors
X,Y € H, the second term is zero and from the first term only the variation
of 4 in d will contribute (because otherwise the surviving ¢ will annihilate
either X or Y). Thus one finds

O4(X,Y) = G+ [X.*Y], (4.14)

a formula that we will reencounter in our discussion of Donaldson theory below.
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Finally, we will introduce the bundles &£, and £, which will play a role in the
interpretation of topological gauge theories from the Mathai-Quillen point of
view below. If dim(Af) = 2, we consider the bundle

= Axg Q%M. g) (4.15)

associated to the principal bundle (4.1) via the adjoint representation. If
dim (M) = 4, we choose as fibre the space .Q}r (M, g) of self-dual two-forms.
One then has the associated vector bundle

£y 1= Axg Q2 (M,g) (4.16)

over A/G. In the standard manner (4.15) and (4.16) inherit the connection
(4.11) and its curvature (4.14) from the parent principal bundle A — A/G, eq.
(4.1).

4.2. THE ATIYAH-JEFFREY INTERPRETATION OF DONALDSON THEORY

Donaldson theory [1] is the prime example of a cohomological field theory.
It was introduced by Witten to give a field theoretic description of the intersec-
tion numbers of moduli spaces of instantons investigated by Donaldson [12].
Donaldson’s introduction of gauge theoretic methods into the study of four-
manifolds has had enormous impact on the subject (see ref. [36] for reviews),
but unfortunately it would require a separate set of lectures to describe at least
the basic ideas. Likewise, it is not possible to give an account of the field theo-
retic description here which would do justice to the many things that can and
should be said about Donaldson theory. Therefore, I will make only a few general
remarks on the structure of the action of Donaldson theory and other cohomo-
logical field theories describing intersection theory on moduli spaces. The main
aim of this section will, of course, be to show that this action is, despite appear-
ance, also of the Mathai-Quillen type. For a review of both the mathematical
and the physical side of the story see ref. [9, pp. 198-247].

The action of Donaldson theory on a four-manifold M in equivariant form
(1.e. prior to the introduction of gauge ghosts) is [1]

Sp = /(B+(FA)+ +X+(dA'//)+_”B3—/2+'7dA*W)

M
+ (Bda < dat + Ly w] = adlxr241/2). (4.17)

Here (-), denotes projection onto the self-dual part of a two-form,
(F4q)+ =%(FA+*E4)7 *(Fq)y = (Fa)y s (4.18)

etc. Furthermore v € 2! (M, g) is a Grassmann odd Lie algebra valued one-form
with ghost number 1. It is (as in supersymmetric quantum mechanics) the su-
perpartner of the fundamental bosonic variable 4 and represents tangent vectors
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to A. (B,, x4 ) are self-dual two-forms with ghost numbers (0, —1) [Grassmann
parity (even, odd)], and (¢, ¢, n) are elements of Q9(M, g) with ghost numbers
(2,—-2,—1) and parity (even, even, odd). « is a real parameter whose signifi-
cance is the same as that played by « in supersymmetric quantum mechanics
[cf. (3.15)]. This action has an equivariantly nilpotent BRST-like symmetry

0A =y, oy = —da9,

ox+ = By, 0B, = [d.x+],

op =1, on = (4,91,

5¢p =0, 32 =6,, (4.19)

where d, denotes a gauge variation with respect to ¢. From these transformations
it can be seen that the action Sp is BRST exact,

Sb =5/X+((FA>+—aB+/2) +Pdary (4.20)
M

[cf. (2.31), (3.11)]. The single most important consequence of (4.20), which
we will abbreviate to Sp = Jd2p, is that the partition function Z (Sp) of Sp
is given exactly by its one-loop approximation. Likewise, it is independent of
the metric on M and any other “coupling constants” which may enter into its
construction in addition to 4 and g,,. For example, for the metric the argument
runs as follows. Although g, enters in a number of places in (4.17), a variation
of it produces an insertion of a BRST exact operator into the path integral whose
vacuum expectation value vanishes provided that the vacuum is BRST invariant,

(6/38u)Z(Sp) = (8/08u) / 95
—(016((6/0guw ) Zp)|0) = 0. (4.21)

By the same argument, Z (Sp) is independent of « and correlation functions of
metric independent and BRST invariant operators are themselves metric inde-
pendent. We will briefly come back to these “observables” of Donaldson theory
below.

Equation (4.20) also makes the significance of the individual terms in (4.17)
more transparent. In particular, one sees that the first term of (4.20) imposes a
delta function (« = 0) or Gaussian (for a # 0) constraint onto the instanton
configurations (F ), = 0. Together with the gauge fixing of the gauge fields
A, implicit in the above, this localizes the path integral around the instanton
moduli space M;. The second term, on the other hand, fixes the tangent vector
w to be horizontal, i.e. to satisfy djw = 0, and y thus represents a tangent
vector to A/G. Moreover, the y . equation of motion restricts y further to be
tangent to M;j, i.e. to satisfy the linearized instanton equation (d4w ), = 0
(modulo irrelevant terms proportional to «). The number of  zero modes will
thus (generically, see refs. [1,9]) be equal to the dimension d (M) of M;.
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The structure of Donaldson theory summarized in the preceding paragraphs
1s prototypical for the actions of cohomological field theories in general: Given
the moduli space M of interest, one seeks a description of it in terms of certain
fields (e.g. connections), field equations (e.g. (F4), = 0), and their symmetries
(e.g. gauge symmetries). One then constructs an action which is essentially a
bunch of delta functions or Gaussians around the desired field configurations
and (by supersymmetry) their tangents. Thus, a topological action describing
intersection theory on the moduli space of flat connections on some n-manifold
M would roughly be of the form

S~ /B"AzFA + (super partners) + (gauge fixing terms), (4.22)
M

where B € Q"~2(M, g) and (for the cognoscenti) “gauge fixing terms” is meant
to also include all the terms corresponding to the higher cohomology groups of
the deformation complex of M, i.e. to the tower of Bianchi symmetries dg B, _, =
d4B,_3,0pB, 3 = -

Evidently, this is quite a pragmatic and not very sophisticated way of looking
at topological field theory. It will, however, be good enough for the time being.
Later on we will see how to construct the action (4.22) from the more satisfactory
Mathai-Quillen point of view. For an elaboration of the axiomatic approach
initiated by Atiyah [37] see refs. [38, chs. 3 and 4].

Let us now return to Donaldson theory and show that its action Sp, is of the
Mathai-Quillen form. We will do this by making use of the equations of motion
arising from (4.20) (which is legitimate since all the integrals are Gaussian).
We set & = | in the following.

- Integrating out B one obtains the term — (F)?2 /2.

- The n-equation implies that y is horizontal, which is henceforth tacitly
understood.

- The ¢ equation of motion yields

¢ = G+ [y, xyl, (4.23)
and, plugged back into the action, this gives rise to the term

x4 x+1G5 W xw]/2.

- Putting all this together we see that effectively the action of Donaldson
theory is

Sp = /—(FA)1/2— XX+ 1G W, xw1/2 + (day) 12+ (4.24)

M
Let us now compare this with (2.28). We see that, apart from a factor of i
[which is not terribly important and which can be smuggled back into (4.17)
and (4.24) by appropriate scaling of the fields], the correspondence is perfect.
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From the identification x, ~ x , we read off that the standard fibre of the sought
for vector bundle is Qi (M, g). The section is obviously s(4) = (F4) 4, and as
this transforms in the adjoint under gauge transformations the vector bundle in
question has to be the bundle £, introduced in (4.16). This is also confirmed
by a comparison of the second term of (2.28) with the second term of (4.24)
and the curvature form @4, eq. (4.14). Thus we finally arrive at the desired
equation [11]

Z(Sp) = xs(£4) (4.25)

identifying the partition function of Donaldson theory as the regularized Euler
number of the infinite dimensional vector bundle £, and proving the result
claimed in example 2 of section 2.3.

One important point we have ignored so far is that the partition function
Z (Sp) will be zero whenever there are  zero modes, i.e., whenever the dimen-
sion d (M) of M, is non-zero. This is in marked contrast with the situation
we encountered in supersymmetric quantum mechanics in section 3. There the
partition function Z (Sy) = x (M) was generally non-zero, despite the presence
of dim(M) w zero modes. I will now briefly try to explain the reason for this
difference and the related issue of observables in Donaldson theory (with no
claim to completeness nor to complete comprehensibility).

In supersymmetric quantum mechanics there are an equal number of ¥ and
w zero modes, and these can be soaked up by expanding the curvature term
(which contains an equal number of ¥’s and ¥’s) to the appropriate power. In
Donaldson theory the role of ¥ is played by y ;. Generically, however, there will
be no x , zero modes at all, independently of the dimension of the moduli space,
so that the fermionic ¥ zero modes cannot be soaked up by the curvature term
of (4.24). (As an aside: the y, zero modes represent the second cohomology
group of the instanton deformation complex and thus, together with reducible
connections, the obstruction to having a smooth moduli space. For the class of
four-manifolds considered in ref. [12] it can be shown that this cohomology
group is zero at irreducible instantons for a generic metric.)

Thus, in order to get a non-zero result one has to insert operators into the
path integral which take care of the  zero modes or, in other words, one has
to construct a top-form on AM; which can then be integrated over it. These
operators have to be BRST invariant, and—in view of (4.19)—this translates
into the requirement that they represent cohomology classes of .4/G. This is just
like the situation we considered at the end of section 2. When there is a mismatch
between the rank 2m of E and the dimension # of X one can obtain non-zero
numbers by pairing ev (E) with representatives of H"~2" (X ). Likewise, even if
n = 2m but one chooses a non-generic section of E with a k-dimensional zero
locus, this can be represented by an (n — k)-form which still has to be paired
with a k-form in order to make it a volume form on X. In the case of Donaldson
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theory we have chosen a section with a d (M )-dimensional zero locus and we
have to pair the corresponding Euler class, the integrand of (4.25), with d (M )-
forms on .4/G to produce a good volume form on .4/G which will then localize
to a volume form on M;. In the work of Donaldson the cohomology classes
considered for this purpose are certain characteristic classes (of the universal
bundle of ref. [39]) which also arise naturally in the field theoretic description
[40,9]. For instance, one of the building blocks is the two-form ¢ as given by
(4.23), which represents the curvature form @4 (4.14). Unfortunately, these
intersection numbers are very difficult to calculate in general. For details please
consult the cited literature.

4.3. FLAT CONNECTIONS IN TWO AND THREE DIMENSIONS

It is, of course, also possible to turn around the strategy of the previous section,
i.e., to start with the Mathai—Quillen formalism applied to some vector bundle
over A4/G and to then reconstruct the action of the corresponding topological
gauge theory from there.

Let us, for instance, consider the problem of constructing a topological gauge
theory in 3d whose partition function (formally) calculates the Euler charac-
teristic x (M?) of the moduli space M3 = M3(M,G) of flat G connections
on some three-manifold M. We actually already know two ways of achieving
this, provided that we can find a vector field v on A3/G3 (the superscripts are
a reminder of the dimension we are in) whose zero locus is M3. Fortuitously,
in three dimensions such a vector field exists, namely v = *F,. A priori, this
only defines a vector field on A3, as xF; € 21(M,g). It is, however, horizontal
(d} * F4 = 0 by the Bianchi identity d4F, = 0) and thus projects to a vector
field on .43/G3 whose zero locus is M3, This vector field is the gradient vector
field of the Chern-Simons functional

CS(A) = /AdA + 343, (4.26)
M

whose critical points are well known to be the flat connections. [Of course, this
does not really define a functional on .43/G3, as it changes by a constant times
the winding number under large gauge transformations. But its derivative is
well defined and this non-invariance implies that the one-form d 4CS(A) passes
down to a closed but not exact one-form F4 on .43/G3. Explicitly, F is given by

Fq: T[A].A3/g3 - R,

{(X] — [ FuX. (4.27)
/

Note that this does not depend on the representative of [X] as [,, Fyd44 = 0.]
In two dimensions such a vector field appears not to exist at first sight and one
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has to be a little more inventive (cf. ref. [17] and the remarks at the end of this
section).

Given this vector field, the first possibility is then to adapt the Atiyah-Jeffrey
construction of the previous section to the case X = A3/G3and E = T(A43/G%),
to use v = *F); as the regularizing section for

xu(A3G?) = x (M?), (4.28)
and to represent this by the functional integral
1) = [ eelayg?). (4.29)
AJ/g3

Of course, the “action”, 1.e. the exponent of (4.29), will contain non-local terms
like the curvature tensor R 4/, €q. (4.7), as in (4.24). As this is undesirable for a
fundamental action, we will introduce auxiliary fields [like those we eliminated
in going from (4.17) to (4.24)] to rewrite the action in local form.

Alternatively, we can construct supersymmetric quantum mechanics on A43/G3
using 4 + v as the section of T(LA3/G3), i.e., we use the action Sy w, eq.
(3.15), of section 3 and substitute M — A3/G* and W — CS(4). This will
give us a (non-covariant) (3 + 1)-dimensional gauge theory on M x S! (in
fact, the (3 + 1)-decomposition of Donaldson theory, see refs. [41,1,18] for
details). However, from the general arguments of section 3 we know that only
the constant Fourier modes will contribute, so that one is left with an effective
three dimensional action which is identical to the one obtained by the first
method.

Irrespective of how one chooses to go about constructing the action (there are
still further possibilities, see, e.g., refs. [13,14,17]), it reads

Sy = /(BIFA +aBy % Bi/2 4+ datt = dguf2 — dup < dat + Tday)
M

+ (uly, W)+ ndas v + 7dax 7 + Bly, v - ad[7471/2).
(4.30)

u is a scalar field, and as in supersymmetric quantum mechanics we have denoted
the field x of the Mathai-Quillen formula by . The rest should look familiar.
Superficially, this action is very similar to that of Donaldson theory. There is
a Gaussian constraint onto flat connections, the tangents y have to satisfy the
linearized flatness equations, and there are cubic interaction terms involving the
scalar fields ¢, ¢ and u. However, there is one important difference, namely that
there is a perfect symmetry between ¢ and ¥. As in supersymmetric quantum
mechanics, both represent tangent vectors; we also see that both are gauge fixed
to be horizontal, and both have to be tangent to M>. In particular, therefore,
there will be an equal number of i and ¥ zero modes and we have the possibility
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of obtaining a non-zero result even if dim(M?3) # 0. This is reassuring as we,
after all, expect to find Z (Saq) = x (M?3). Let us now show that this is indeed
the case.

— First of all integration over # and 7 forces ¥ and 7 to be horizontal, 4 4 =
v, hyW = W, i.e., to represent tangent vectors to .43/G3.

- Setting o = 1, integration over ¢ yields ¢ = —Gg * [w, =y ], giving rise to
a term

KT +T G [y, +p )2

in the action.

- The equation of motion for u reads

= GYx [y, 7]
and plugging this back into the action one obtains a term

Ly, +T ], Gy x [y, x71)/2.

— This combination of Green function is precisely that appearing in the for-
mula (4.7) for the Riemann curvature tensor R 4,¢. Thus we have already re-
duced the action to the form Sy; = R4/ + “something” and we expect the
“something” to be the contribution (4.10) to R4, €q. (4.8), quadratic in the
extrinsic curvature K.

- To evaluate the integral over the remaining fields 4, y, and ¥ we expand
them about their classical configurations, which we can take to be flat connec-
tions A, and their tangents (because of a-independence). By standard arguments
we may restrict ourselves to a one-loop approximation and to this order the re-
maining terms in the action become

[ dacda s dacdaf2 + [Tecwi da).
M
- Finally, integration over 4, yields

(Ve ], G4 [V we) /2,

which we recognize to be precisely the contribution (4.10) of K. Thus we have
reduced the action (4.30) to R4, expressed in terms of the classical configura-
tions A, . and .. We are now on familiar ground [see, e.g., (2.25), (3.20)]
and know that evaluation of this finite dimensional integral gives

Z(Spm) = x(M). (4.31)

This calculation also illustrates how the Gauss—Codazzi equations emerge from
the Mathai—Quillen form in general. Guided by this example it is now straight-
forward to perform the analogous manipulations in the finite dimensional case
(section 2) and in supersymmetric quantum mechanics (section 3).

We end this 3d example with the remark that, by a result of Taubes [26], the
partition function of (2.24) formally equals the Casson invariant of M if M is
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a homology three-sphere [13]. This, combined with the above considerations,
has led us to propose y (M) as a candidate for the definition of the Casson
invariant of more general three-manifolds (see ref. [17] for some preliminary
considerations).

The simplest example to consider in two dimensions is the analogue of Don-
aldson theory, 1.e. a topological field theory describing intersection theory on
a moduli space M? of flat connections in two dimensions. Instead of the bun-
dle £, with standard fibre Qi (M,g), eq. (4.16), we choose the bundle &, eq.
(4.15), with standard fibre 2°(M, g). This will have the effect of replacing the
self-dual two-forms B, and y, of Donaldson theory by zero-forms By and .
A natural section of & is s(A4) = *F4 with zero locus M?. This results in the
trading of (F4), and its linearization (d4y ), for Fq and its linearization d 4
in the action (4.17). With this dictionary in mind the action is precisely the
same as that of Donaldson theory. It is also the 2d version of (4.22) and we
have thus just completed the construction of

Example 5. X = A?/G? E = &£y, s = *F4. The fundamental reason for why this
theory is so similar to Donaldson theory is that in both cases the deformation
complex is short so that one will find essentially the same field content. In three
dimensions, on the other hand, the deformation complex is longer by one term
and this is reflected in the appearance of the scalar field u in (4.30).

Again, the partition function, i.e. the regularized Euler number of &, will
vanish when dim (M?2) # 0. But, none too surprisingly, there also exist analogues
of the Donaldson polynomials, the observables of Donaldson theory, which come
to the rescue in this case. Life in two dimensions is easier than in four, and the
corresponding intersection numbers have indeed been calculated recently by
Thaddeus [42] using powerful tools of conformal field theory and algebraic
geometry (see also refs. [43,44]).

As our final example let us consider a topological gauge theory representing
the Euler characteristic of M2. As mentioned above, =F, is not a vector field on
A?/G?, so that it is not immediately obvious which section of 7.42/G? to choose.
The dimensional reduction of the action (4.30) suggests that the right base space
to consider is X = A% x Q0(M,g), where the second factor represents the third
component p of 4. Then a possible section of TX is V (A4, p) = (xdyp,*F4),
whose zero locus (for irreducible 4) is indeed precisely the space of flat connec-
tions. But this is not the complete story yet. The problem is that *d4p is only
horizontal if 4 is flat (d} xd4p = [+F4, p]). Thus, one possibility is to use a
delta function instead of a Gaussian constraint onto flat connections (o = 0).
This action can be found in ref. [17]. Alternatively, one might attempt to re-
place xd.4p by h4=d 4 p. This necessitates the introduction of additional auxiliary
fields to eliminate the non-locality of 4,4, and a more detailed investigation of
this possibility is left to the reader.
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