
JOURNAL OF

Journalof GeometryandPhysics 11 (1993) 95—127 GEOMETRYA~D
North-Holland PHYSICS

TheMathai—Quillenformalism
andtopologicalfield theory

MatthiasBlau’
NIKHEF-H, P.O. Box 41882, 1009DB Amsterdam,Netherlands

Theselecturenotes give an introductory accountof an approachto cohomologicalfield
theory due to Atiyah and Jeffreywhich is basedon the constructionof Gaussianshaped
Thom forms by Mathai and Quillen. Topics covered are:an explanationof the Mathai—
Quillen formalism for finite dimensionalvectorbundles;the definition of regularizedEuler
numbersof infinite dimensionalvectorbundles; interpretationof supersymmetricquantum
mechanicsastheregularizedEulernumberof loop space;theAtiyah—Jeffreyinterpretationof
Donaldsontheory; the constructionof topologicalgaugetheoriesfrom infinite dimensional
vectorbundlesover spacesof connections.

Keywords: topologicalfield theory, Mathai—Quillen,Euler number,
equivariantcohomology,supersymmetricquantummechanics,loop space

1991 MSC: 81 T 40, 81 Q 60, 53 C 80, 55 N 91, 57 R 20

1. Introduction

Topological field theory has beena lively areafor researchever since the
appearanceof theseminalworkby Witten [1—3]a fewyearsago. Activity in the
field increasedwhenthe observationwas made[4,5] that topologicalgravity in
two dimensionsis closely relatedto two-dimensionalquantumgravity andits
descriptionin termsof randommatrix models. Severalreviews of the subject
arenow available~

I will try to complementtheseexistingreviewsby focussingon an approachto
topologicalfield theorybasedon theconstructionby Mathai andQuillen [101of
GaussianshapedThom forms for finite dimensionalvectorbundles.Thisvery
elegantapproachis dueto Atiyah andJeffrey [11] who realizedthat topolog-
ical field theory could be regardedas an infinite dimensionalgeneralizationof

E-mail: t75@nikheth.nikhef.nl,22747::t75.

~ See refs. [6—8] for an account of the relation among topological gravity, matrix models,

intersectiontheory on moduli space,and integrablemodels,andref. [9] for a generalreview
of topologicalfield theory.

0393-0440/93/s06.00 © 1993 — Elsevier SciencePublishersB.V. All rights reserved



96 M. Blau / The Mathai—Quillen.formalism andtopological field theory

this construction.There areseveraladvantagesof adoptingthis point of view.
First of all, it providesana priori explanationof the factthat finite dimensional

topological invariantscan be representedby functional integrals, the hallmark
of topological field theory. Moreover, it has the charmingproperty of giving
a unified descriptionof all kindsof (cohomological)topological field theories
and supersymmetricquantummechanics.This hasthe addedbonusof making
this approachquite elementaryas it allows one to developthe main ideas in
a quantummechanicalsetting and then to transferthem almost verbatim to
field theory. Lastly, it also provides someinsight into the mechanismof the
localizationof path integralsin supersymmetricquantummechanicsandtopo-
logical field theory.

To thosealreadyfamiliar with thesubject,theselectureswill hopefullyprovide
a newand perhapsenlighteningperspectiveon topological field theory. At the
sametime they should, ideally, constitutean elementaryintroduction to the
subjectrequiringno prior knowledgeof thefield andlittle morethansomebasic
differential geometryandthe ability to performGaussianintegrals.

Therecurrentthemein thesenoteswill bethe Eulernumberof avectorbundle.
In order to understandthe basic idea of the Atiyah—Jeffrey approach,let us
thereforerecall that classicallythereexist two quite different prescriptionsfor
calculatingthe Euler numberx (X) ~(TX) of (the tangentbundle of) a
manifold X. The first is topological in nature and instructs one to choosea
vectorfield V on X with isolatedzerosandto count thesezeroswith signs (this
is the Hopf theorem).The secondis differential geometricandrepresentsx (X)
asthe integraloverX of adensity(top form) cv constructedfrom the curvature
of someconnectionV on X (the Gauss—Bonnettheorem).Likewise, the Euler
number~(E) of someothervectorbundleE overX canbe determinedin terms
of eithera sections of E or a connectionV on E.

A moregeneralformula, obtainedby Mathai andQui]len [101, interpolates

betweenthesetwo classicalprescriptions.It relieson theconstructionof a form
e~,v(E)which dependson both a sectionsanda connectionV. This form has
the propertythat

X(E) = fesv(E)

for all s andV. Moreover,this equationreducesto the Hopf or Gauss—Bonnet
theoremfor appropriatechoiceof s (for isolatedzerosto the former andto the
latter fors = 0).

WhatAtiyah andJeffrey [11] pointedoutwasthat,althoughCV andf~CV do
not makesensefor infinite dimensionalE andX, theMathai—Quillenform e~,v
canbe usedto formally defineregularizedEulernu,nbers~~(E)of suchbundles
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by

X5(E) := fesv(E)

for certainchoicesof s. Although not independentof s, thesenumbersXs (E)
arenaturally associatedwith E for naturalchoicesof s andare thereforelikely
to be of topological interest.

It is preciselysucha representationof topological invariants (in a non-tech-
nical #2 ) by functional integralswhich is the characteristicpropertyof
topological field theories,andwhich couldalso betakenastheir definition.This
suggeststhat certaintopological field theoriescanbe interpretedor obtainedin

this way. It will be the main aim of thesenotes to explain that this is indeed
the casefor the cohomologicaltheories (i.e. not Chern—Simonstheoryand its
siblings).The modelswe considerexplicitly are, in additionto supersymmetric
quantum mechanics,Donaldsontheory [1] and various theoriesof flat con-
nectionsdiscussed,e.g., in refs. [13—15]andrefs. [16—181.This frameworkis,
however,broadenoughto include topological sigmamodels,twisted minimal
models,andtheir couplingto topological gravity as well (see refs. [19,20]).

The following notesconsistof threesections,dealingwith theMathai—Quillen
formalism, supersymmetricquantummechanics,andtopological gaugetheory,
respectively.Eachsectionbeginswith abrief reviewof the requiredmathemat-
ical background.Thus section2.1 recallsthe classicalexpressionsfor the Euler
classandEuler numberof a finite dimensionalvectorbundle.For our present
purposesthe Euler numberof a vector bundle is best understoodin terms of
its Thom classand section2.2 explainsthis concept. It also containsthe con-
struction of the GaussianshapedThom form of Mathai and Quillen and its

descendantse~,v.Section 2.3 dealswith the applicationof the Mathai—Quillen
formalism to infinite dimensionalvector bundlesand their regularizedEuler
numberand introducesthe examplesto be discussedin moredetail in the sub-
sequentsections.

Section 3.1 contains the bare essentialsof the geometryof the ioop space
LM of a manifold M necessaryto apply the Mathai—Quillen formalism to its
tangentbundle.Section3.2 explainshow supersymmetricquantummechanics
canbe interpretedasdefining or arising as a path integral representationof the
regularizedEuler numberof LM. Some related results like the path integral

#2 What is meantby “topological” in this context is the invarianceof numberslike x~(E)under

deformationsof certain of the data entering into its calculation. It is in this sensethat the
Donaldsoninvariantsof four-manifolds [12], which ariseas correlationfunctionsof the field
theory consideredin ref. [1], are topological as they are independentof the metric which
entersinto the definition of the instantonmoduli space.They are,however,not topological
invariants in the mathematicalsenseas they have the remarkableproperty of dependingon
thedifferentiable structureof the four-manifold.
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proofsof the Gauss—BonnetandPoincaré—Hopftheoremsarereviewedin the
light of this derivation. In section 3.3 it is shown that the finite dimensional
Mathai—Quillen form can, in turn, be derivedfrom supersymmetricquantum
mechanics.

Section4.1 dealswith thegeometryof gaugetheories.We deriveanexpression
for the curvatureform of the principal fibration A —* A/~ andgive a formula
for the Riemanncurvaturetensorof moduli subspacesM c A/a. We alsoin-
troducethoseinfinite dimensionalbundleswhich will enterinto the subsequent
discussionof topologicalgaugetheory. In section 4.2 it is shownthat the par-
tition functionof Donaldsontheorycanbe interpretedas the regularizedEuler
numberofa bundleof self-dualtwo-formsoverA/a. It alsocontainsabriefdis-
cussionof somepropertiesoftopologicalfield theoriesingeneral,aswell assome
remarkson the interpretationof observablesin the presentsetting.Topological
gaugetheoriesof flat connectionsin two andthreedimensionsare the subject
of section4.3. In particular,in 3d we sketch the constructionof a topological
gaugetheory representingthe Euler characteristicof the moduli spaceof flat
connections,oncedirectly fromthe tangentbundleofA/~andoncefrom super-
symmetricquantummechanicson A/c. We also constructa two-dimensional
analogueofDonaldsontheoryrepresentingintersectiontheoryon moduli spaces
of flat connections.

Thebasicreferencesfor sections2.1 and2.2 areBottandTu [211 andMathai
andQuillen [10]. For section 2.3 see refs. [11] and [171. The main result
of section4.2 is due to Atiyah andJeffrey [11], anda detaileddiscussionof
Donaldsontheory [1,12] canbe found in ref. [9, pp. 198—247]. Sections3.2,
3.3 and4.3 arebasedon joint work with GeorgeThompson[16—18].Further
referencescanbe found in the text andfurther informationon topological field
theory in the cited reviewsandthe lecturesof DannyBirmingham [221at this
School.

2. TheMathai—Quillenformalism

In section2.1 we will recall somewell known factsandtheoremsconcerning
the Eulerclassandthe Eulernumberof a finite dimensionalvector bundleE.
Forourpresentpurposesthe Eulerclassis mostprofitably understoodin terms
of theThomclassof Eandwewill adoptthispointof view in section2.2. There
we also introduceanddiscussat somelength the Mathai—Quillenformalism,
which provides,amongotherthings,a concretedifferential form realizationof
the Thom class. In section2.3 we explain how the Mathai—Quillen formalism
canbeusedto definecertainregularizedEulernumbersof E whenE is infinite
dimensional.We will also introducethe examples(supersymmetricquantum
mechanics,topologicalgaugetheory)whichwill thenoccupyus in theremainder
of thesenotes.
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2.1. THE EULER NUMBER OF A FINITE DIMENSIONAL VECTOR BUNDLE

Considera real vectorbundleit : E —~ X over a manifold X. We will assume
thatE andX areorientable,X is compactwithoutboundary,andthatthe rank
(fibre dimension)of E is evenandsatisfiesrk(E) = 2m <dim(X) = n.

The Euler class of E is an integral cohomologyclasse(E) e H2m(X,IJ~)
H2m(X). Form = 1 (a two-planebundle)e(E) can,e.g., bedefinedin arather
pedestrianmanner(cf. ref. [211 for the material coveredin this and the first
part of the following section).We choosea cover of X by open sets Uc, and
denoteby gap : U,~,n Up —~ SO(2) the transitionfunctionsof E satisfyingthe
cocyclecondition

gap = g~, gapgpy =~g,~,. (2.1)
Identifying SO(2) U(l), we set ço~~p= iloggap with

~afl + ~9fly— 4~ayfi 2m7, (2.2)

so that dço is an additivecocycle,

d~liap+ dqip~= d~’ay. (2.3)

In fact, morethan that is true.By introducinga partition of unity subordinate
to {Ua}, i.e. a set of functionsPa satisfying

= 1, supp(p(,,)c Ufl,, (2.4)

anddefiningone-forms~. Ofl (Ia by ~, = (2m)’ ~ onefinds that

~d~ap ~ (2.5)

which obviously implies (2.3). Thus dç~a= ~ on the overlaps(J,~,fl Up and
thereforethed~’spiecetogetherto give a global two-form on X which is closed
but not necessarilyexact.The cohomologyclassof this form is independentof
the choiceof~’ssatisfying(2.5) andis the Eulerclasse(E) E H2(X) of E.

For higher rankbundlesa similar constructionis possible in principle but
becomesratherunwieldy. Fortunatelythereare other, moretransparent,ways
of thinking aboute(E).

Thefirst of theseis in termsof sectionsof E. In general,a twistedbundlewill
haveno nowherevanishingnon-singularsectionsandonedefinesthe Eulerclass
to bethe homologyclassof thezerolocusof a genericsectionof E. Its Poincaré
dual is thena cohomologyclassin H2’” (X).

The secondmakes useof the Chern—Weyl theoryof curvaturesandcharac-
teristicclassesandproducesan explicit representativeCV (E) of e(E) in terms
of the curvatureQ~of a connectionV on E. Thinking of Q~as amatrix of
two-formsonehas

ev(E) = (2it)’” Pf(Q~) (2.6)



100 M. Blau / TheMathai.-Quillenformalismandtopologicalfield theory

wherePf(A) denotesthe Pfaffian of the real antisymmetricmatrixA,

Pf(A) = (1) ~�aia
2~Aaia2Aa2~ja2~, (2.7)

satisfyingPf(A)
2 = det(A). Standardargumentsshowthat the cohomology

classof ev is independentof the choiceof V.
Finally, the third is in termsof the Thom classof E andwe will describethis

in section2.2.
If therankof E is equalto the dimensionof X (e.g., if E = TX, the tangent

bundleof X), thenH2’”(X) = H”(X) = ]~andnothingis lost by considering,
insteadof e(E), its evaluationon (thefundamentalclass[X] of) X, the Euler
number

X(E) =e(E)[X]. (2.8)

In termsof the two descriptionsof e(E) given above,this numbercanbe ob-
tainedeither as the numberof zerosof a genericsections of E (which arenow
isolated)countedwith multiplicity,

~(E) = ~ vs(xk) (2.9)
xk :s (xk) = 0

[herevs(Xk) is the degreeor index of s at Xk], or as the integral

~(E) = fev(E). (2.10)

Of particular interestto us is the casewhere E = TX. The Euler number
x (TX) is thenequalto the Eulercharacteristicx (X) of X,

~(TX) =x(X)E>(_l)kbk(X), (2.11)
k

wherebk (X) = dim(Hk (X)) is the kth Betti numberof X. In thiscontext,eqs.
(2.9) and (2.10),expressing~(X)as the numberof zerosof a vectorfield and
the integralof a densityconstructedfrom the RiemanniancurvaturetensorlZx
of X, areknown as the Poincaré—Hopftheoremandthe Gauss—Bonnettheorem,
respectively.For example,in two dimensions(n = 2), (2.10) reducesto the
well known formula

X(X) = ~_f~d2xR,

whereR is the scalarcurvatureof X.
For E = TX thereis alsoan interestinggeneralizationof (2.9) involving a

vector field V with a zero locusX~’which is not necessarilyzerodimensional.
Denotingthe connectedcomponentsof Xv by ~ thisgeneralizationreads

X(X) = >X(X~). (2.12)
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Thisreducesto (2.9) whentheX~areisolatedpointsandis an identity when
V is the zerovectorfield.

Oneof the beautiesof the Mathai—Quillenformalism, to be discussednext, is
that it providesa correspondinggeneralizationof (2.10), i.e. an explicit differ-
ential form representativee~,vof e(E) dependingon botha sections of E and

a connectionV on E suchthat

X(E) = fesv(E) (2.13)

andsuchthat (2.13) reducesto any of the aboveequationsfor the appropriate
choiceofE ands [i.e., to (2.10) ifs is the zerosection,to (2.9) whenthe zeros
of s areisolated,andto (2.12) for a generalvectorfield on TX].

If n > 2in, thenwe cannotevaluatee(E) on [X] as in (2.8). We can,how-

ever, evaluateit on homology2tn-cyclesor (equivalently)takethe productof
e(E) with elementsof H’~2’”(X) and evaluatethis on [X]. In this way one
obtains intersectionnumbersof X associatedwith the vectorbundle E. A cor-
respondinginterpretationof the Donaldsonpolynomials [12] asobservablesin

the topologicalgaugetheoryof ref. [1] hasbeengivenby AtiyahandJeffreyref.
[11] (cf. section4.2).

2.2. THE THOM CLASS AND THE MATHAI-QUILLEN FORM

The Eulerclasse(E) hasthe propertythat it is the pullbackof a cohomology
classon E, calledthe Thom class i (E) of E, via the zerosection i: X —~ E,

e(E) = i*1(E). (2.14)

We will show this explicitly below [cf. eqs. (2.33), (2.34)]. To understand
the origin andsignificanceof ~i (E), recall that therearetwo naturalnotionsof
cohomologyfor differential formson avectorbundleE overacompactmanifold
X: ordinary de Rhamcohomology 11* (E) and compactvertical cohomology
H~(E). The latter dealswith forms whoserestrictionto any fibre hascompact
support.As E is contractibleto X onehas

H*(E)~H*(X). (2.15)

On the other hand,as the compactcohomologyof a vector spaceonly has a
generatorin the top dimensions(a “bump” volume form with unit volume),
onehas

~ (2.16)

More technically, for forms of compactvertical support onehasthe notion of
“push-down” or “integration along the fibres”, denotedby m~.In local coordi-
nates,and for trivial bundles,this is the obviousoperationof integratingover
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the fibresthepart of w ~ Q~.(E)(thespaceof formswith compactverticalsup-
port) which containsa vertical 2m-form andinterpretingthe result as a form
on X. This prescriptiongives a globally well definedoperation

m~:Q~(E)~4Q*_
2m(X) (2.17)

In particular,for any o. E Q,~~(E)and (~E Q* (X) onehas

= ~ (2.18)

7r~commuteswith the exteriorderivativeson E andX (it is sufficientto check
this in local coordinates),

(2.19)

and inducesthe so called Thom isomorphism7TE : H*(X) —p H~~’”(E), eq.
(2.16). Underthis isomorphism,the generator1 E H°(X) correspondsto a
2m-dimensionalcohomologyclasson E, the ThomclassI~(E),

i(E) =Ij~(l)eH~”(E). (2.20)

By definition, P(E) satisfiesit~~(E)= 1, so thatby (2.18) the Thom isomor-
phismis explicitly given by

7~((5) = (it*c~)~(E) . (2.21

After this small digressionlet us now return to the Euler classe(E) andeq.
(2.14). As any two sectionsof E arehomotopicas mapsfrom X toE, andas
homotopicmapsinducethe samepullbackmap in cohomology,we canuseany
sectionsof E insteadof the zerosectionto pull back‘1 (E) to X andstill find

s*1(E) = e(E). (2.22)

The advantageof this way of looking at the Euler classe(E) should now be

evident: providedthat we can find an explicit differential form representative
~bv(E) of 1(E), dependingon a connectionV onE, we canpull it backto X
via a sections to obtain a 2m-form

e
5,~(E) = s*~Pv(E) (2.23)

representingthe Euler classe(E) and (if n = 2,n) satisfying (2.13). It should
be borne in mind, however, that by (2.22) all theseforms are cohomologous
so that this construction,as nice as it is, is not very interestingfrom the co-
homological point of view. To get somethingreally new one should therefore
considersituationswherethe forms (2.23) arenot necessarilycohomologousto
cv. As pointedout by Atiyah andJeffrey [11], sucha situationoccurswhenone
considersinfinite dimensionalvectorbundleswhereCV (an “infinite-form”) is
not definedat all. In that casethe addedflexibility in the choiceof s becomes
crucial andopensup the possibility of obtainingwell defined,but s-dependent,
“Euler classes”of E. We will explain this in section2.3.
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To proceedwith theconstructionof 1v, let usmaketwo preliminaryremarks.
The first is that for explicit formulae it is convenientto switch from working
with forms with compactsupport along the fibres to working with “Gaussian
shaped”formsrapidly decreasingalongthe fibres (in asuitabletechnicalsense).
Everything we havesaid so far goes through in that setting [101 and we will
henceforthreplaceQ~(E)by Q~(E)etc.

The secondis thatPfaffians (2.7) ariseas fermionic (Berezin)integrals(this
may soundlike arathermysteriousremarkto makeat this point, but is of course
one of the reasonswhy what we aregoing throughhere hasanythingto do with
supersymmetryandtopologicalfield theory). More precisely,if we havea real
antisymmetricmatrix (Aab) and introducereal Grassmannodd variablesZa

then

Pf(A) = fdx exp(XaAabXb/2). (2.24)

In particular,we canthereforewrite the form cv (2.6) as

ev(E) = (2itY’”fdx exp(XaQ~Xb/2). (2.25)

The ideais now to extendthe right handside of (2.25) to a form ‘J~v(E)onE
having Gaussiandecayalongthe fibres andsatisfyingir~I~(E)= 1.

RegardingE asavectorbundleassociatedto aprincipal G bundleP with stan-
dardfibre F, E = P XG F, we can representforms on E by basic,i.e. horizontal
and G-invariant,forms on P x F,

Q*(E) = ~~as(~ x F) (2.26)

and sectionsof E by G-equivariantmaps from P to F. Moreover, via the
projection it : P —~ X, E pulls back to the canonicallytrivial vector bundle

= P x F overP whoseinducedconnectionandcurvaturewe alsodenote
by V and Q~.With this identification understood,the Thom form ~ (E) of
Mathaiand Quillen is givenby

= (2it)_me~2/2fdxexp(XaQ~Xb/2+ iV~Xa), (2.27)

where we havechosena fixed fibre metric on F, c~°arecoordinateson F and
~ is the exterior covariant derivativeof ~a a one-form on P x F. We now
checkthat ‘b~(E) really representstheThom classof E.

First of all, integratingoutx oneseesthat (2.27) definesa 2m-form on P x F.
This form is indeedbasicand representsa closed2m-form on E. G-invariance
andhorizontalityarealmostobviousfrom (2.27) asQ~andV~arehorizontal
(by the definition of the covariantexterior derivative). Lessevidentis the fact
that I~(E) is closed.This is bestunderstoodin termsof the equivariantcoho-
mology H~(F)ofF (cf. sections5 and6 of ref. [10]) andis relatedto the fact
that the exponentin (2.27),

+ XaQ~Xb/2+ iV~aXa, (2.28)
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is invariant underthe graded (i.e. super-)symmetry

ôXa = ~ d~= V~, (2.29)

mappingthe Grassmannoddx to the even~ and~ to the Grassmannodd one-

form V~.“On shell”, i.e. usingthe x equationof motion iV~ = Q~,bxhthis
supersymmetrysquaresto rotations by the curvaturematrix Q~,

a c-~ab £2~a c~ab~
~-‘ X = ~‘vXh’ ~) =

which is the hallmark of equivariantcohomology.Fora morethoroughdiscus-

sion of the relationbetweentheclassical(Cartan-,Weyl-) modelsof equivariant
cohomologyand the BRST model, as well as of the Mathai—Quillen formalism
in that context,seeref. [23].

By introducinga Grassmannevenscalarfield B0 with ô~0= Ba andóB~=

Q~bxb the “action” (2.28) becomesô-exactoff-shell,

(2.28)
5Xa(~~a— Ba/2). (2.31)

It is of course no coincidencethat the structurewe have uncoveredhere is
reminiscentof topological field theory, see,e.g., (3.11), (4.20) below.

Becauseof the factor e~2/2,(2.27) is certainly rapidly decreasingalong the
fibre directions.What remainsto be checkedto be ableto assertthat J~(E)
representsthe Thom classci(E) is that ir~~I~v(E)= I or, underthe isomor-
phism (2.26), that .J~1v(E)= 1. Extracting from the 2m-form 1v(E) the

part which is a 2m-form on F we find that indeed

/ ~~(E) = (2it)mfe~2/2 /dX
2tn

F = (2it)~mfe~2/2d~1. . ~ = 1. (2.32)

This provesthat

[~i~v(E)] 1~(E)EH~~’”(E). (2.33)

We now take a closer look at the forms s*~I~v(E)= c~,v(E), eq. (2.23),

for various choicesof s. In our notatione
5,v(E) is obtainedfrom (2.27) by

replacing the fibre coordinate~ by s(x). The first thing to note is that for the
zerosection i, (2.27) reducesto (2.25) andtherefore

ev(E) = i*~I~v(E). (2.34)

This is a refinementof (2.14) to an equality betweendifferential forms and
therefore,in particular, finally proves(2.14) itself.

If n = 2m ands is a genericsectionof E transversalto the zerosection,then
we can calculatef~~ (E) by replacings by ys for y E Ei~andevaluatingthe
integral in the limit y —~ x~.In that limit the curvatureterm in (2.27) will not
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contributeand one can usethe stationaryphaseapproximationto reducethe
integral to a sumof contributionsfrom the zerosof s, reproducingeq. (2.9).
The calculationis entirely analogousto similarcalculationsin supersymmetric
quantummechanics(see,e.g.,ref. [9]) and I will not repeatit here.In fact, as
we will later derive the Mathai—Quillenformula (2.27) from supersymmetric
quantummechanics(section3.3), this showsthat the requiredmanipulations
are not only entirely analogousto but identical with those in supersymmetric
quantummechanics.As we couldequallywell haveput y = 0 in the above,this
also establishesdirectly the equalityof (2.9) and (2.10).

Finally, if E = TX and V is a non-genericsectionof X with zero locusXv,
the situationis a little bit morecomplicated.It turns outthat in this casef~ev,v
canbeexpressedin termsofthe Riemanncurvaturetensor7tx~of Xv. Here7~Xy

arisesfrom the datal~xand V enteringev,vvia the Gauss—Codazziequations.
Quite generally,theseexpressthecurvatureRy of asubmanifoldV c X in terms
of R.x andthe extrinsiccurvatureof V in X (we will recall theseequationsin
section4.1). Then eq. (2.12) is reproducedin the presentsettingin the form
(we assumethatXv is connected—thisis for notational simplicity only)

~(X) = feVV = (2it)_dim(Xv)I2fPf(~X~). (2.35)

Again the manipulationsrequiredto arrive at (2.35) are exactlyas in super-

symmetricquantummechanics[17,1 8] andwe will perform sucha calculation
in the context of topologicalgaugetheory in section 4.3 [see the calculations
leadingto (4.31)].

2.3. THE MATHAI-QUILLEN FORMALISM FOR INFINITE DIMENSIONAL VECTOR
BUNDLES

Let usrecapitulatebriefly what we haveachievedso far. Using the Mathai—
Quillen form 1v(E), eq. (2.27), we haveconstructeda family of differential
forms ~ (E) parametrizedby a sections anda connectionV andall repre-
sentingthe Euler classe(E) E H2’”(X). In particular,forE = TX, the equa-
tionX(X) = fxev,v(X) interpolatesbetweenthe classicalPoincaré—Hopfand
Gauss—Bonnettheorems.

To bein asituationwherethe formse
5,V arenotnecessarilyall cohomologous

to CV, andwherethe Mathai—Quillenformalism thus“comesinto its own” [111,
we now considerinfinite dimensionalvector bundles.To motivate the concept
of aregularizedEuler numberof such a bundle,to be introducedbelow, recall
eq. (2.12) for the Euler numberX(X) of a manifold X, which we repeathere
for conveniencein the form

X(X) X(Xv). (2.36)
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WhenX is finite dimensionalthis is an identity, while its left handside is not
definedwhen X is infinite dimensional.Assume,however,that we canfind a
vectorfield V on X whosezero locus is a finite dimensionalsubmanifoldof X.
Thenthe right handsideof (2.36) is well definedandwecanuseit to tentatively
define a regularizedEuler numberxv(X) as

Xv(X) : x(Xv). (2.37)

By (2.13) andthe standardlocalization arguments,as reflected,e.g., in (2.35),
we expectthis numberto be given by the (functional) integral

xv(X) = fevv(X). (2.38)

This equationcan (formally) be confirmedby explicit calculation.The ideais
againto replaceV by yV, so that (2.38) localizesto the zerosof V as y —*

and to show that in this limit the surviving terms in (2.28) give rise to the
RiemanncurvaturetensorofXv, expressedin termsof lZx andV via the Gauss—
Codazziequations.A rigorousproofcanprobablybeobtainedin somecasesby
probabilisticmethodsas used,e.g., by Bismut [24,25] in relatedcontexts.We
will, however,contentourselveswith verifying (2.38) in someexamplesbelow.

Moregenerally,wearenow led to definethe regularizedEulernumberXs(E)

of an infinite dimensionalvectorbundleE as

Xs(E)~fes,V(E). (2.39)

Again,this expressionturns outto makesensewhenthezero locusof s is a finite
dimensionalmanifold X5, in which caseX5(E) is the Euler numberof some
finite dimensionalvectorbundleoverX~(a quotientbundleof the restriction
~ cf. refs. [19,20]).

Of course,thereis no reasonto expect~5(E) to be independentof s, even
if one restrictsone’s attentionto thosesectionss for which the integral (2.39)

exists. However, if s is a sectionof E naturallyassociatedwith E (we will see
examplesof this below), thenx~(E)is also naturallyassociatedwith E andcan
beexpectedto carryinterestingtopologicalinformation.This is indeedthecase.

It is preciselysuch a representationof finite dimensionaltopological invari-
ants by infinite dimensionalintegrals which is the characteristicpropertyof
topological field theories. It is thenperhapsnottoo surprisinganymoreat this
point, that topological field theoryactionscan be constructedfrom (2.28) for
suitablechoicesof X, E, ands.

Hereis a surveyof the exampleswe will discussin a little more detail in the
following sections(LM denotesthe loop spaceof a manifold M and A~~~/cka
spaceof gaugeorbits in k dimensions).
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Example1.X = LM, E = TX, V = ~ (section3.2). (2.28) becomesthe

standardactionSM of de Rhamsupersymmetric quantummechanicsand

LM evv(LM) = Z(SM) (2.40)

is the partition function of SM. The zero locus (LM) v of V is the spaceof
constantloops, i.e., (LM)v M. We thereforeexpect(2.40) to calculate

Xv(LM) ~(M). (2.41)

As this indeedagreeswith the well known explicit evaluationof Z (SM) in the
form

Z (SM) = (
2m)_dtm(M)/2f Pf(1ZM), (2.42)

this is our first confirmationof (2.39).Converselythe Mathai—Quillen formal-
ismnow providesanunderstandingandexplanationof the mechanismby which
the (path) integral (2.40) overLM localizesto the integral (2.42) overM.

Insteadof the vectorfield ~conecan alsouse.~+ W’, whereW’ denotesthe
gradientvectorfield of somefunctionW on M. By anargumentto beintroduced
in section3 (the “squaringargument”)the zerolocusof this vectorfield is the
zerolocusof W’ on M (i.e., .~= W’ = 0), whoseEulernumberis the sameas
thatofMby (2.36),

xv(LM) X(Mw’) X(M). (2.43)

Again this agreeswith the explicit evaluationof the path integralof the corre-
spondingsupersymmetricquantummechanicsaction.

Example2.X = A
4/G4, E = e÷,s = (FA)+ (section4.2). (E~is a certain

bundleof self-dualtwo-formsover A4/g4 and (FA ) + is the self-dualpart of the
curvatureFA of A.) ThezerolocusX

5 is the moduli spaceMj of instantons,and
not unexpectedlythe correspondingaction is thatof Donaldsontheory [12,1].
Thepartition functionXs(E.~)is what is knownasthe first Donaldsoninvariant
and is only non-zerowhen d (M) dim (Mj) = 0. If d (M) ~ 0 thenone
hasto insert elementsof H0’(M)(A

4/g4) into the path integral in the manner
explainedatthe endof section2.1 to obtainnon-vanishingresults(the Donald-
sonpolynomials).This interpretationof Donaldsontheory is dueto Atiyah and
Jeffrey [11].

Example3.X = A3/g3, E = TX, V = *FA (section4.3). (* is the Hodge
operator,and the one-form *FA definesa vectorfield on A3/c3, the gradient
vectorfield of theChern—Simonsfunctional.)Thezerolocusof V is the moduli
spaceM3 of flat connectionsandthe actioncoincideswith that constructedin
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refs. [13,14,17]. Again onefinds full agreementof

xv(A3/c3) = ~(M3) (2.44)

with the partitionfunction of theaction,which gives~(M3)in theform (2.35),
i.e. via the Gauss—Codazziequationsfor the embeddingM3 C A3/c3. In ref.
[11] thispartition functionwasfirst identifiedwith a regularizedEuler number

of A3/g3. We havenow identified it morespecifically with the Euler number
of M3. In ref. [26] it was shown that for certainthree-manifolds(homology
spheres)xv(A3/c3) is the Cassoninvariant. Henceour considerationssuggest
that the Cassoninvariant can be definedas x (M3) for more general three-
manifolds [17].

Example4.X = L(A3/c3),E = TX, V = A+*FA (section4.3).This issuper-
symmetricquantummechanicson A3/g3 andin a senseacombinationof all the
threeaboveexamples.The resulting(non-covariant)gaugetheoryaction in 3 + 1
dimensionsis thatof Donaldsontheory (example2). After partial localization
from L(A3/c3) to A3/g3 it is seento be equivalentto the action of example
3. Furtherreductionto the zerosof the gradientvectorfield *FA (example1)
reducesthe partition function to an integral overM3 andcalculatesx (M3).

This againconfirms the equalityof the left andright handsidesof (2.38).The
reasonwhy Donaldsontheory is relatedto instantonmoduli spacesin example
2, but to moduli spacesof flat connectionsin this exampleis explainedin ref.
[17].

3. The Eulernumberof loop spaceandsupersymmetricquantummechanics

In this sectionwe will work out someof the details of example1. We begin
with a (very) briefsurveyof the geometryof loop space(section3.1). We then

apply the Mathai—Quillenformalism to the tangentbundleof loopspace,derive
supersymmetricquantummechanicsfrom that, andreview someof the most
important featuresof supersymmetricquantum mechanicsin the light of this
derivation (section 3.2). Finally, to completethe picture, we explain how the
finite-dimensionalMathai—Quillenform (2.27) canbe derivedfrom supersym-
metric quantummechanics(section3.3).

3.1. LOOP SPACE GEOMETRY

We denoteby M a smoothorientableRiemannianmanifold with metric g

and by LM the loopspaceof M, i.e. the spaceof smoothmapsfrom the circle
5’ to M,

LM:= C~(S’,M) (3.1)
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(consistentwith the sloppinessto beencounteredthroughoutthesenoteswewill
not worry aboutthe technicalitiesof infinite dimensionalmanifolds).Elements
of LM aredenotedby x(t) or x~(t),where t E [0,1], x~are (local) coordi-
nateson M andx~(0) = x’1 (1). In supersymmetricquantummechanicsit is
convenientto scalet suchthat t E [0,/i] andx~(0)= x~(fl) for some/I fi

and to regard /1 as an additional parameter(the inversetemperature)of the
theory.

A tangentvectorto a loopx (t) canberegardedasan infinitesimalvariation of
the ioop. As such it canbe thoughtof as a vectorfield on the imagex (S’) C M

[tangent to M butnot necessarilyto theloopx (5’ )]. In otherwords,thetangent
spaceT~(LM) to LM at the loop x(t) is the spaceof smoothsectionsof the
tangentbundleTM restrictedto the loop x(t),

Tx(LM)_~F~(X*(TM)). (3.2)

Thereis a canonicalvectorfield on LM whichgeneratesrigid rotationsx(t)
x(t + e) of the loop arounditself. It is given by V(x)(t) = .~(t) (or V =

for short).The metric g on M inducesa metric ,~ on LM through

= fdtgpv(x(t))~(x)(t)~0(x)(t). (3.3)

Likewise, everyp-form (~on M gives rise to ap-form ~ on LM via

= fdt~x(f)(Vt(x)(t) V~(x)(t)), (3.4)

anda local basisof one-formson LM is given by thedifferentialsdx~(t).
The last piece of information we needis that the Levi-Cività connectionon

M can bepulled backto S’ via a loop x(t). Thisdefinesa covariantderivative
on (3.2) andits dual,which wedenoteby Vt. We have,e.g.,

(V,V~)(x)(t)= (d/dt)V’~(x)(t)+ F~(x(t))*~(t)V~(x)(t). (3.5)

3.2. SUPERSYMMETRIC QUANTUM MECHANICS

We are now in a positionto discussexample1 of section2.3 in moredetail.
In the notationof that section,we chooseX = LM, E = TX, and V = x.
Theanticommutingvariables~ thusparametrizethefibres of TX andwe write

them as Xa = ea~LiiJp,whereeft is the inversevielbein correspondingto g,jv.
Using the metric (3.3) as a fibre metric on T~X,the first term of (2.28) is
simply the standardbosonickinetic term of quantummechanics,

fdt g~
0~~/2. (3.6)
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To putthe remainingtermsinto a morefamiliar form, we usethestandardtrick

of replacingthe differentialsdx~(t) by periodicanticommutingvariables,

dx~(t)—~yi’~(t), (3.7)

andintegratingoverthemaswell. As theintegraloverthe w’s will simply pick out
thetop-formpart, which is thento beintegratedoverX [cf. (2.39)], nothing is
changedby thesubstitution(3.7).With all thisin mindthecompleteexponential
of the Mathai—Quillenform CV,V(LM) becomes

SM = Jdt [—g~0*’~/2 + R~ ~ — ~ (3.8)

This is precisely the standardaction of de Rham (or N = 1) supersymmet-
nc quantummechanicsto be found, e.g., in refs. [27—31] (with the spinors
appearingtheredecomposedinto their components;we also choose~,iiand~i7to
be independentrealfields insteadof complex conjugates).It will be convenient
to introducea multiplier field B,~andto rewrite the action (3.8) in first order

form,

SM = Idt [i~B~ + gIWB~Bv/2+ R~e~p~ — ~ (3.9)

The supersymmetryof this action is

‘~ ó—B—F”x —w , /1 ~jpYJ~lfJ

= 0, ~ = f’~~B0yi’~— R~~,~70w~yi°/2. (3.10)

This is readily verified by noticing that ô
2 = 0 and that (3.9) can itself be

written as a supersymmetryvariation,

SM = oJdt [~(i~ + g~B,,/2)]. (3.11)

Note the similarity with (2.31). Reinterpreting5 as a BRST operator,this also

showsthat the sectorof supersymmetricquantummechanicsannihilatedby 5
is topological (a BRST exact actionbeing one of the hallmarksof topological
field theory). As we will seebelow that only ground statescontribute to the
partition function anyway, it is, in particular, independentof the coefficientof
the secondterm of (3.11) regardlessof whetherwe treat 5 as a conventional

supersymmetryoperator(mappingbosonicto fermionic statesandvice versa)
or as a BRST operator(annihilating physicalstates).Rescalingthis term by a



M. Blau / TheMathai—Quillenformalismand topologicalfield theory 111

realparametercs wefind the equivalentaction

SM = fdt ~ (3.12)

On the other hand,if we rescalethe time variable by /3 we obtain the action
(3.12) with dt replacedby f0’ dt and rs replacedby /3. Thus the “topolog-
ical” Q-independencetranslatesinto the quantummechanical/3-independence.
Conversely,this /3-independenceis obviousfrom thestandardHamiltoniancon-
structionof supersymmetricquantummechanics(cf. below) andtranslatesinto

the topologicalcs-independenceof (3.12).
This is not the place to enterinto a detaileddiscussionof supersymmetric

quantummechanics,andwe will in the following focus on thoseaspectsrele-
vant for the Mathai—Quillenside of the issueandour subsequentconsiderations
involving topologicalgaugetheories.Fordetaileddiscussionsof supersymmetric
quantummechanicsin the contextof indextheoryandtopological field theory
the readeris referredto ref. [30] andref. [9, pp. 140—176],respectively.

Our discussionof the Mathai—Quillen formalism suggeststhat the partition

function Z (SM) of the supersymmetricquantum mechanicsaction SM, eq.
(3.8), with periodic boundaryconditions on all the fields, is the Euler num-
ber~(M)ofM [as~v(LM) = X((LM) v) = ~(M), cf. (2.37)—(2.4l)].As
is well known, this is indeedthe case.

Theconventionalwayto seethis (if onedoesnotyet trust theinfinite dimen-
sionalversionof the Mathai—Quillenformalism) is to startwith the definition
of ~(M) as the Euler characteristicof M, eq. (2.11). As thereis a one-to-one
correspondencebetweencohomologyclassesandharmonicforms on M (more
precisely,thereis aunique representativein every de Rhamcohomologyclass
which is annihilatedby the Laplacian4 = dd” + d*d) onecanwrite x (X) as
atraceover the spaceKer 4,

X(M) = trKerA(—l)~, (3.13)

where(l)F is + 1 (—1) on even(odd) forms.As theoperatord+d*commutes
with 4 and mapsevento odd forms andvice versa,thereis an exactpairing
between“bosonic”and“fermionic” eigenvectorsof 4 with non-zeroeigenvalue.
It is thuspossibleto extendthe trace in (3.13) to a trace over the spaceof all

differential forms,

X(M) = trQ~.(_l)’~eM. (3.14)
As only the zeromodesof 4 will contributeto the trace,it is evidentlyindepen-

dent of the value of /3. Once one has put x (M) into this form of a statistical
mechanicspartition function, onecanusethe Feynman—Kacformula to repre-
sentit as a supersymmetricpath integral [30] with the action (3.8), imaginary
time of period/1 andperiodicboundaryconditionson the anticommutingvan-
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ables~ [due to the insertionof (....
1)F] Conversely,a Hamiltonian analysis

of the action (3.8) would tell us that we can representits Hamiltonian by the
Laplacian4 on differential forms [28] and, tracingbackthe stepswhich led us
to (3.14), we would then againdeducethatZ(S,~)= ~(M), as anticipatedin
(2.40).

This Hamiltonianway of arriving at the actionof supersymmetricquantum
mechanicsshouldbe contrastedwith the Mathai—Quillenapproach.In the for-
meronestartswith theoperatorwhoseindexonewishesto calculate(e.g.d + d*),

constructsa correspondingHamiltonian, and thendeducesthe action. On the
otherhand,in the latteronebeginswith a finite dimensionaltopological invari-

ant [e.g.,~ (M)] andrepresentsthat directly as an infinite dimensionalintegral,
the partition functionof a supersymmetricaction.

What makessuch a path integral representationof~(M)interestingis that

one can now go aheadandtry to somehowevaluate it directly, thus possibly
obtainingalternativeexpressionsfor~(M).Indeed,onecanobtainpath integral
“proofs” of the Gauss—BonnetandPoincaré—Hopftheoremsin this way. This is

just theinfinite dimensionalanalogueof theconsiderationsof section2.2, where
different choicesof s in f,~e~(E) lead to different expressionsfor x (E). As
wewill derivethefinite dimensionalMathai—Quillenform from supersymmetnic
quantummechanicsin section3.3 wecanappealto the manipulationsof section
2.2 to completethese“proofs”. However,it is also instructive to perform these
calculationsdirectly. Before indicating how this can be done, we will needto
introduceageneralizationof the action (3.8) which ariseswhen onetakesthe
section.~ + yg~

0LJuWof T(LM) (cf. example I of section2.3) to regularize
the Euler numberof LM. Here W is a function (potential) on M andy is yet
one i~iorearbitrary realparameter.In that caseone obtains [introducing also
the parametercs of (3.12)]

SM,YW = /dt [i(~ + yg~°’3,~W(x))B~+ (~g’’B~B,72

+ ~ — i~7~(5~~V
1+ yg’”’V~00~ ) w’~]. (3.15)

FromtheHamiltonianpointof viewthisactionarisesfrom replacingtheexterior
derivatived by

d —‘ ~ eyWdeyW (3.16)

andapplying theaboveprocedureto the correspondingLaplacian4+~.As there
is a one-to-onecorrespondencebetween4- and4~w-harmonicforms, this also
represents~(M)(independentlyof the valueof y).

This freedomin the choice of parameters(S, /3, ~ greatly facilitatesthe eval-
uation of the partition function. Let us, for example,choosecs = 0 in (3.15).
Then the curvatureterm dropsout completelyand the B-integral will simply
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give us a deltafunction constraint*‘~+ ygPVf3
0W = 0. Squaringthis equation

and integratingit over t onefinds

*‘~+ yg’°’3~,W= 0

fdt g~v*~*0+ y
2gP00~WO~W+ 2y*~3~W= 0

(3.17)

as the secondline is the sumof two non-negativetermsanda total derivative.
This is the “squaringargument” referredto in section2.3. It demonstratesthat
the path integraloverLM is reducedto an integralover M (by *‘~ = 0) and
further to anintegral overthe set ~ of critical pointsof W (andanalogously
for the w’s by supersymmetry).Whenthe critical pointsareisolated,inspection
of (3.15) immediatelyrevealsthat the partition function is

X(M) = Z(SM,W) = ~ sign(detH~
5(W)), (3.18)

xk:dW(xk=O)

where
Hxk(W) = (V~,30W)(Xk) (3.19)

is the Hessian of W at Xk. This is the Poincaré—Hopftheorem(2.9). This result
canalso be derivedby keepingrs non-zeroandtaking the limit y —~ cx instead,
which also hastheeffect of localizingthe pathintegralaroundthecritical points
of W becauseof the term y

2 W’2 in the action.
If we switch off the potential, thenwe cannotsimply set cs = 0 in (3.15),

as the resultingpath integral would be singular dueto the undampedbosonic
and fermionic zeromodes.In that case,the limit cs —~ 0 or /3 —p 0 has to be
takenwith morecare. Sincewhateverwe cando with cs we can alsodo with /3,
let usset cs = 1 in the following. We first rescalethe time coordinateI by /3,

andthenwe rescaleB and~7by /31/2 B —p /3 ‘/2B and~ /3 I/2~ andall the
non-zeromodesof x and w by /3 1/2 This will leavethe path integralmeasure
invariantandhasthe effect that all the /3-dependenttermsin the actionareat
leastof order O(/3h12) andthe limit /1 —~ 0 can now be taken with impunity.
The integralover the non-constantmodesgives 1 andthe net effect of this is

that oneis left with a finite-dimensionalintegralof the form (2.25),namely

X(M) fdx fdw fd~ exp(R~
5~~w~0w°/4), (3.20)

over the constantmodesof x, vi’ and~7 of which thereare dim(M) each.In
order to get anon-zerocontribution (i.e. to soakup the fermionic zeromodes)
onehasto expand(3.20) to (dim(M)/2)th order, yieldingthe Pfaffian of l?~M

and hence,upon integration over M (the x zero modes) the Gauss—Bonnet
theorem(2.6), (2.10). (3.20) also givesthe correctresult for odd dimensional
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manifolds,~ (M) = 0, as thereis no way to pull down an odd numberof vi’s
and~‘s from the exponent.

If the critical points of W are not isolated, then, by a combinationof the
abovearguments,onerecoversthegeneralizationx (M) = x (Mw,), eqs.(2.12),

(2.43), of the Poincaré—Hopftheoremin the form (2.35).
As this treatmentof supersymmetnicquantummechanicshasadmittedlybeen

somewhatsketchyI shouldperhaps,summarizingthis section,stateclearlywhat

are the importantpoints to keepin mind:
(i) The Mathai—Quillen formalism applied to the 1oop spaceLM of a Rie-

mannianmanifold M leadsdirectly to the actioti of supersymmetricquantum
mechanicswith targetspaceM. Different sectionsleadto different actions,and
thosewe haveconsideredall regularizethe Euler numberof LM to bex (M).

(ii) Explicit evaluationof the supersymmetricquantummechanicspath inte-
gralsobtainedin this way confirmsthatwe can indeedrepresentthe regularized
Eulernumber~v(LM), asdefinedby (2.37),by the functional integral (2.38).

(iii) Finally, I haveargued(althoughnotprovedin detail) that thezeromodes

are all that matter in supersymmetnicquantum mechanics,the integral over
the non-zeromodesgiving 1. This observationis useful whenone attemptsto
constructtopologicalgaugetheoriesfrom supersymmetricquantummechanics
on spacesof connections(seeref. [18] andthe remarksin section4.3).

3.3. THE MATHAI-QUILLEN FORM FROM SUPERSYMMETRICQUANTUM
MECHANICS

So far we havederivedthe actionof supersymmetnicquantummechanicsby
formally applyingthe Mathai—Quillenformalism to LM, andwehaveindicated
how to rederivethe classical(generalized)Poincaré—Hopfand Gauss—Bonnet
formulae. What is still lacking to completethe picture is a derivation of the
general(finite dimensional)Mathai—Quillenform ~ (E), eq. (2.27), forE =
TM from supersymmetricquantummechanics.

As cI~(TM) canbe pulledbackto M via an arbitraryvectorfield (sectionof
TM) v,notnecessarilyagradientvectorfield, weneedto considerthesupensym-
metricquantummechanicsaction resultingfrom the regularizingsection* + yv
of T(LM). This is just the action (3.15) with 30W replacedby g,j0v’~.In that
casethe squaringargument,as expressedin (3. 17), fails becausethe cross-term
will not integrateto zero. In the limit y —~ ~ the path integralwill nevertheless
reduceto a Gaussianaroundthe zero locusof v becauseof the term y

2g~v~Lv)~

in the action, and in this limit the path integralcalculatesx (M) = x (M,)) in
the form (2.35).

To derivetheMathai—Quillenform,however,we areinterestedin finite values
of y. Thus,what we needto do now is adjustthe parametersin sucha way that
the zero modesof all the terms involving the vector field v or the curvature



M. Blau / The Mathai—Quillen formalism and topological field theory 115

survive. Proceedingexactlyas in the derivationof the Gauss—Bonnettheorem
oneendsup with atime-independent“action” of the form

B2/2 + yvL~B,~+ R’ ~ — iy~J~V
0v~vi

0, (3.21)

which—upon integrationover B—reproducesprecisely the exponent(2.28) of

the Mathai—Quillenform (2.27) with ~a replacedby thearbitrarysectionyv~or
ye9,~v~of TM. We havethusalso redenivedthe Mathai—Quillenformula (2.13)

for TM,

~(M) =fevv(TM)~ (3.22)

from supersymmetricquantummechanics.Specializingnow to v = 0 or v a
genericvectorfield with isolatedzerosagainreproducestheclassicalexpressions.

4. The Euler number of vector bundles over A/~and topological gaugetheory

In this sectionwe essentiallywork out the details of examples2 and 3 and
discusssomerelatedmodelsas well. Section4.1 containsa briefsummaryof the
facts we will needfrom the geometryof gaugetheories.In section 4.2 we will
seehow Donaldsontheorycan be interpretedin terms of the Mathai—Quillen
formalism. Section 4.3 sketchesthe constructionof a topological gaugetheory
in 3d from thetangentbundleoveror (alternatively)supersymmetricquantum
mechanicson gaugeorbit spacewhich representstheEuler characteristicof the
moduli spaceof flat connections.It also containsa brief discussionof the 2d

analogueof Donaldsontheory.

4.1. GEOMETRY OF GAUGE THEORIES

Let (M, g) be a compact,oriented, Riemannianmanifold, it : P —+ M a
principal G bundle over M, G a compactsemisimpleLie group andg its Lie
algebra.We denoteby A the spaceof (irreducible) connectionson P, andby g

the infinite dimensionalgaugegroup of vertical automorphismsof P (modulo
the centerof G). Thenc actsfreely on A and

(4.1)

is aprincipalg bundle.Theaim of this sectionwill beto determinea connection
andcurvatureon this principalbundle,so thatwecanwrite down (or recognize)

the Mathai—Quillen form for someinfinite dimensionalvectorbundlesassoci-
ated to it. We will also statethe Gauss—Codazziequationswhich expressthe
RiemanncurvaturetensorR~Mof somemoduli subspaceM of A/~in termsof

the curvatureof A/~andthe extrinsiccurvature(secondfundamentalform) of
the embeddingM ‘-~ A/c. Thedetails canbe found,e.g.,in refs. [32—35].
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Continuingwith notation,we denoteby Q’< (M, g) the spaceof k-formson M
with valuesin the adjoint bundleadP : = P xadg andby

dA : Qk(Mg)
9k+1 (M,g), (4.2)

the covaniant exterior derivative with curvature (c/A)

2 = F.
4. The spaces

Qk(Mg) have natural scalar productsdefinedby the metric g on M (and

the correspondingHodgeoperator*) andan invariant scalarproduct tr on g,
namely

(X,Y) =ftr(X*Y)~ X,YEQk(M,g) (4.3)

(I hopethat occasionallydenotingtheseformsby X as well will not give rise to
any confusionwith the manifold X of section2). The tangentspaceTAA to A

at a connectionA can be identified with 91 (M, g) [as A is an affine space,two
connectionsdiffering by an elementof 91 (M, g)]. Equation (4.3) thusdefines
a metric g~,on A. TheLie algebraof c canbe identifiedwith Q°(M,g) andacts
on A eA via gaugetransformations,

A’—*A+dAA, AEQ°(M,g), (4.4)

so that dAA is the fundamentalvectorfield at A correspondingto A. At each
point A E A, TAA canthusbe split into a vertical part VA = Im(dA) (tangent

to the orbit of c throughA) anda horizontalpart HA = Ker(d~)(the orthogo-
nal complementof VA with respectto the scalarproduct (4.3)). Explicitly this

decompositionof XE 91 (M,g) into its verticalandhorizontal partsis

X = dAG~d~X+ (X — dAG~d~X)

?)~X+ hAX, (4.5)

whereG~= (d~dA)~is the Greenfunction of the scalarLaplacian (which
exists if A is irreducible).We will identify the tangentspaceT[A]A/c with 11.4
for somerepresentativeA of the gaugeequivalenceclass [A].

Theng~inducesa metric gA/c on A/~via

gA/g([X], [Y]) = g~(hAX,hAY), (4.6)

whereX, V E 91 (N,g) projectto [X], [Y] E TIA]A/c. With the samenotation
the Riemanniancurvatureof A/~is

(R~A/c([X], [Y]) [.Z], [W])

= ~*[hAX,*hAW],G~*[hAY~*hAZ])—(X4--5Y)

+2K*[hAW~*hAZ1,G°~*[hAX,*hAY]). (4.7)

If M is someembeddedsubmanifoldof A/c, then (4.6) inducesa metric g~



M. Blau / TheMathai—Quillenformalismandtopological.field theory 117

on M whoseRiemanncurvaturetensoris

(1ZM([X], [Y])[Z], [Wi)

=

+ ((KM( [Y], [Z] ),KM ( [X], [WI)) — (X ~ Y)), (4.8)

where KM is the extrinsic curvature (or secondfundamentalform) of M in

A/c. For instantonmoduli spacesKM hasbeencomputedin ref. [35] andfor
moduli spacesof flat connectionsin two andthreedimensionsonefinds [17]

KM([X],[Y]) = —d~G~[~A,YA]. (4.9)

Herethe tangentvectors [X] and [Y] toM arerepresentedon the right hand
sideby elementsX andYof 91 (M, g) satisfyingboththe horizontalitycondition
djX = d~Y= 0 andthelinearizedflatnessequationdAX = dAY = 0. G~is the
Greenfunction of the Laplacianon two-formsandin the threedimensionalcase
wethink of it asbeingcomposedof a projectorontothe orthogonalcomplement

of the zeromodesof the Laplacian.Thus

(KA.l ([VI, [Z ] ), K~([XI, [WI)) = [YA, ZA ], G~[XA, ~‘A ]) (4.10)

andtogetherwith (4.7) and(4.8) this determines7~Mentirelyin termsof Green
functionsof differentialoperatorson M. It is in this form thatwewill encounter
~R.Min section4.3.

The decomposition(4.5) also definesa connectionon the principal bundle

A -~ A/~ itself, with connectionform °A = G°
4d~.Indeed,°A canbe regarded

as a Lie algebra (= Q~(M, g)) valuedone-form on A,

OA: TAA —*

X~OA(X)=G~d~X. (4.11)

It transformshomogenouslyundergaugetransformations,is obviouslyvertical
[i.e., vanisheson Ker(d~)],andassignsto thefundamentalvectorfield dAA the
correspondingLie algebraelement

OA(dAA) = G~d~dAA= A, (4.12)

asbehovesa connectionform. Its curvatureis the horizontaltwo-form

9A—dAOA+~[OA,OA] (4.13)

(dA denotesthe exterior derivative on A). Evaluatedon horizontal vectors
X, V E HA the secondterm is zero andfrom the first term only the variation
of A in d~will contribute (becauseotherwisethe survivingd~will annihilate
eitherX or V). Thus onefinds

6A(X,Y) = G°~*[X,*Y], (4.14)

aformulathat wewill reencounterin our discussionof Donaldsontheorybelow.
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Finally, we will introducethe bundlesLo andE~which will play a role in the
interpretationof topological gaugetheoriesfrom the Mathai—Quillen point of

view below. If dim(M) = 2, we considerthe bundle

So:=AxçQ°(M,g) (4.15)

associatedto the principal bundle (4.1) via the adjoint representation.If
dim(M) = 4, we chooseas fibre the spaceQ~(M,g)of self-dualtwo-forms.
Onethenhasthe associatedvectorbundle

£~:=AxçQ~(M,g) (4.16)

over A/c. In the standardmanner(4.15) and (4.16) inherit the connection
(4.11) and its curvature(4.14) from the parentprincipal bundleA —* A/c, eq.
(4.1).

4.2. THE ATIYAH-JEFFREY INTERPRETATION OF DONALDSON THEORY

Donaldsontheory [1] is the prime exampleof a cohomologicalfield theory.

It wasintroducedby Witten to give a field theoreticdescriptionof the intersec-
tion numbersof moduli spacesof instantonsinvestigatedby Donaldson [12].
Donaldson’sintroduction of gaugetheoreticmethodsinto the study of four-
manifoldshas hadenormousimpact on the subject (see ref. [36] for reviews),

but unfortunatelyit would requirea separateset of lecturesto describeat least
the basicideas. Likewise, it is notpossibleto give an accountof the field theo-
retic descriptionhere which would do justice to the many things that can and
shouldbesaidaboutDonaldsontheory.Therefore,I will makeonly a fewgeneral
remarkson the structureof the actionof Donaldsontheoryandothercohomo-

logical field theoriesdescribingintersectiontheoryon moduli spaces.The main
aim of this sectionwill, of course,be to showthat this action is, despiteappear-
ance,also of the Mathai—Quillentype. For a review of both the mathematical
andthe physicalside of the storyseeref. [9, pp. 198—247].

The action of Donaldsontheoryon a four-manifold Al in equivariantform
(i.e. prior to the introductionof gaugeghosts)is [1]

SD =f(B+FA+ +X+(dAW)+—csB~/2+tldA*W)

+ (~dA*dA~+~[w,~w]—cscl[x+,x+]/2). (4.17)

Here (•)+ denotesprojectiononto the self-dualpart of a two-form,

‘F ~‘ liE’ U \ (C’ \ (U~ AJ+ = ~
1A + 5’A), 5~’A)+ = ~1A)+ ,

etc. Furthermorevi E 91 (M, g) is a Grassmannodd Lie algebra valuedone-form
with ghostnumber1. It is (as in supersymmetricquantummechanics)the su-
perpartnerofthe fundamentalbosonicvariableA andrepresentstangentvectors
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to A. (B+,~+)areself-dualtwo-formswithghostnumbers(0, —1) [Grassmann
parity (even,odd)], and~ ~j) areelementsof Q°(M,g) with ghostnumbers
(2, —2, —1) andparity (even,even, odd). cs is a real parameterwhosesignifi-
canceis the sameas that playedby cs in supersymmetricquantummechanics
[cf. (3.15)]. This action hasan equivariantlynilpotentBRST-like symmetry

ôyJ=—dA~5,

= B~, ôB~= [~~x+]~
óij= [~],

(4.19)

wherec5~denotesa gaugevariationwith respectto ~5.Fromthesetransformations

it canbe seenthat the actionSD is BRST exact,

SD =~fx+((FA)+_csB+/2+~dA*vi (4.20)

[cf. (2.31), (3.11)]. The singlemost importantconsequenceof (4.20),which
we will abbreviateto SD = ~ED, is that the partition function Z (SD) of SD

is given exactly by its one-loopapproximation.Likewise, it is independentof

the metric on M and any other “coupling constants”which may enterinto its
constructionin additionto h andgpo. For example,for the metricthe argument
runsasfollows. Althoughgpo entersin a numberof placesin (4.17),a variation
of it producesaninsertionof a BRSTexactoperatorinto thepath integralwhose
vacuumexpectationvaluevanishesprovidedthat thevacuumis BRSTinvariant,

(~/ôg~
0)Z(SD)= (ó/og~v)fe_~

= —(O~((I~5/~g~0)ED)IO)= 0. (4.21)

By the sameargument,Z (SD) is independentof cs andcorrelationfunctionsof
metric independentand BRST invariant operatorsarethemselvesmetric inde-
pendent.Wewill briefly comebackto these“observables”of Donaldsontheory

below.
Equation (4.20) also makesthesignificanceof the individual termsin (4.17)

moretransparent.In particular,one seesthat thefirst term of (4.20) imposesa
delta function (cs = 0) or Gaussian(for rs ~ 0) constraintonto the instanton
configurations (FA ) + = 0. Togetherwith the gaugefixing of the gaugefields
A, implicit in the above, this localizesthe path integral aroundthe instanton
moduli spaceMi. The secondterm,on the otherhand,fixes the tangentvector

vi to be horizontal, i.e. to satisfy d~vi= 0, and y, thus representsa tangent
vector to A/c. Moreover,the x+ equationof motion restricts vi further to be
tangentto Mi, i.e. to satisfy the linearized instantonequation (dAw)+ = 0

(moduloirrelevant termsproportionalto ct). The numberof vi zeromodeswill
thus (generically,seerefs. [1,9]) be equalto the dimensiond(M) of Mj.
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The structureof Donaldsontheorysummarizedin the precedingparagraphs
is prototypicalfor the actionsof cohomologicalfield theoriesin general:Given
the moduli spaceM of interest,oneseeksa descriptionof it in termsof certain
fields (e.g.connections),field equations(e.g. (FA ) + = 0),andtheir symmetries
(e.g. gaugesymmetries).One then constructsan action which is essentiallya
bunch of deltafunctions or Gaussiansaroundthe desiredfield configurations
and (by supersymmetry)their tangents.Thus, a topological action describing
intersectiontheoryon the moduli spaceof flat connectionson somen-manifold
Al would roughly be of the form

s Bfl2FA + (super partners)+ (gauge fixing terms), (4.22)

whereB E Q”
2(M g) and (for thecognoscenti)“gaugefixing terms” is meant

to also include all the terms correspondingto the highercohomologygroupsof
thedeformationcomplexof M, i.e. to thetowerof Bianchisymmetriesó~B~

2=

dABfl3,ÔBB~~3=

Evidently, this is quitea pragmaticandnot verysophisticatedway of looking
at topological field theory. It will, however,be good enoughfor the time being.
Lateronwe will seehowto constructtheaction (4.22) from the moresatisfactory
Mathai—Quillen point of view. For an elaborationof the axiomatic approach
initiated by Atiyah [371 seerefs. [38, chs. 3 and4].

Let usnow returnto Donaldsontheoryandshow that its actionSD is of the
Mathai—Quillenform. We will do this by makinguseof theequationsof motion
arising from (4.20) (which is legitimatesinceall the integralsare Gaussian).
We set (5 = 1 in the following.

— Integratingout B oneobtainsthe term —(F4)~/2.

— The mi-equation implies that vi is horizontal, which is henceforthtacitly
understood.

— The ç
5 equationof motion yields

= G~* [vi,*wI, (4.23)

and,pluggedbackinto the action, this gives rise to the term

— [x+~x+]G~[vi, *vi]/2.

— Puttingall this togetherwe see that effectively the action of Donaldson

theory is

SD =f_(FA)~/2— [x+,x+1G~[w,*vi]/2 + (dAvi)+x+. (4.24)

Let us now comparethis with (2.28). We see that, apart from a factor of i
[which is not terribly importantand which canbe smuggledback into (4.17)
and (4.24) by appropriatescalingof the fields], the correspondenceis perfect.
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FromtheidentificationXa ‘~ x + we readoff that the standardfibre of the sought
for vector bundleis Q~(M,g).Thesectionis obviouslys(A) = (FA)÷,andas
this transformsin the adjoint undergaugetransformationsthe vectorbundlein
questionhas to be the bundleE~introducedin (4.16). This is also confirmed
by a comparisonof the secondterm of (2.28) with the secondterm of (4.24)
and the curvatureform 9A, eq. (4.14). Thus we finally arrive at the desired

equation[11]

Z(SD) Xs(’~+) (4.25)

identifying the partition function of Donaldsontheoryas the regularizedEuler

number of the infinite dimensionalvector bundle ~+ and proving the result
claimedin example2 of section2.3.

One important point we have ignored so far is that the partition function
Z (SD) will be zerowheneverthereare Ill zeromodes,i.e., wheneverthe dimen-

sion d (M) of Mj is non-zero.This is in markedcontrastwith the situation
we encounteredin supersymmetricquantummechanicsin section3. There the
partition function Z(SM) = x (M) wasgenerallynon-zero,despitethe presence
of dim(M) vi zero modes.I will now briefly try to explain the reasonfor this
differenceand the related issueof observablesin Donaldsontheory (with no
claim to completenessnor to completecomprehensibility).

In supersymmetricquantummechanicstherearean equalnumberof vi and
~iJzero modes,and thesecan be soakedup by expandingthe curvatureterm
(which containsan equalnumberof vi’s and ~Ts) to the appropriatepower. In
Donaldsontheorytherole of ~7is playedby x +. Generically,however,therewill

beno x + zeromodesat all, independentlyof thedimensionof the moduli space,
sothat the fermionic vi zero modescannotbe soakedup by the curvatureterm
of (4.24). (As an aside: the x+ zero modesrepresentthe secondcohomology
group of the instantondeformationcomplex andthus, togetherwith reducible
connections,theobstructionto having a smoothmoduli space.For the classof
four-manifoldsconsideredin ref. [12] it can be shown that this cohomology
group is zeroat irreducible instantonsfor a genericmetric.)

Thus, in order to get a non-zeroresult one has to insert operatorsinto the
path integral which take careof the vi zeromodesor, in otherwords, onehas
to constructa top-form on Mi which can then be integratedover it. These
operatorshaveto be BRST invariant, and—inview of (4.19)—thistranslates
into the requirementthat they representcohomologyclassesof .4/c.This is just
like thesituationweconsideredattheendof section2. Whenthereis amismatch
betweenthe rank 2m of E andthe dimensionn of X onecanobtain non-zero
numbersby pairingCV (E) with representativesof H”2’” (X). Likewise,evenif
n = 2m but onechoosesa non-genericsectionof E with ak-dimensionalzero
locus, this canbe representedby an (n — k)-form which still hasto be paired
with ak-form in orderto makeit avolumeform on X. In thecaseof Donaldson
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theory we havechosena sectionwith a d (M )-dimensionalzerolocus andwe
haveto pairthe correspondingEulerclass,the integrandof (4.25),with d(M )-
forms on A/~to producea good volume form on A/~which will thenlocalize
to a volume form on Mi. In the work of Donaldsonthe cohomologyclasses
consideredfor this purposearecertaincharacteristicclasses(of the universal
bundleof ref. [39]) which alsoarisenaturally in the field theoreticdescription
[40,9]. For instance,one of the building blocks is the two-form ~ as given by
(4.23), which representsthe curvatureform 9A (4.14). Unfortunately, these
intersectionnumbersarevery difficult to calculatein general.Fordetailsplease
consultthe cited literature.

4.3. FLAT CONNECTIONS IN TWO AND THREE DIMENSIONS

It is, of course,alsopossibleto turnaroundthestrategyof theprevioussection,
i.e., to startwith the Mathai—Quillenformalismapplied to somevectorbundle
over A/~ andto then reconstructthe actionof the correspondingtopological
gaugetheory from there.

Let us, for instance,considerthe problemof constructinga topologicalgauge
theory in 3d whosepartition function (formally) calculatesthe Euler charac-
teristic x(M3) of the moduli spaceM3 = M3(M,G) of flat G connections
on somethree-manifoldM~We actually alreadyknow two ways of achieving
this, providedthatwe canfind a vector field v on A3/c3 (the superscriptsare
a reminderof the dimensionwe arein) whosezerolocus is M3. Fortuitously,
in threedimensionssuch avector field exists,namely v = *FA. A priori, this
only definesa vectorfield on A3, as *FA E 91 (M,g). it is, however,horizontal
(d~* FA = 0 by the Bianchi identity dAFA = 0) andthus projectsto a vector
field on A3/c3 whosezerolocus is M3. This vectorfield is the gradientvector
field of the Chern—Simonsfunctional

CS(A) =fAdA + ~A3, (4.26)

whosecritical pointsarewell knownto bethe flat connections.[Of course,this
doesnot really define a functionalon A3/c3,as it changesby a constanttimes
the winding numberunder large gaugetransformations.But its derivative is
well definedandthisnon-invarianceimpliesthat theone-formdACS(A)passes
down to a closedbut not exactone-formFA on A3/c3.Explicitly, FA is given by

~A: T[A]A3/c3

[X] fFAX. (4.27)

Notethatthisdoesnot dependon the representativeof [X] as J’~FAdAA = 0.]

In two dimensionssucha vectorfield appearsnotto existat first sight andone
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hasto bea little moreinventive (cf. ref. [17] andthe remarksat the endof this
section).

Given this vectorfield, thefirst possibility is thento adaptthe Atiyah—Jeffrey
constructionof theprevioussectionto thecaseX = A3/c3andE = T(A3/c3),
to usev = *FA as the regularizingsectionfor

x
1(A

3/c3) = ~(M3), (4.28)

andto representthis by the functional integral

= f e~(A3/~). (4.29)

Of course,the “action”, i.e. the exponentof (4.29),will containnon-localterms
like the curvaturetensor1?.4~,eq. (4.7), asin (4.24).As this is undesirablefor a
fundamentalaction,wewill introduceauxiliary fields [like thosewe eliminated
in goingfrom (4.17)to (4.24)] to rewrite the actionin local form.

Alternatively,wecanconstructsupersymmetricquantummechanicson A3/c3
using A + v as the sectionof T(LA3/c3), i.e., we use the action SM,W,eq.
(3.15), of section3 and substituteM —+ A3/c3 and W -~ CS(A).This will
give us a (non-covariant)(3 + 1)-dimensionalgaugetheory on M x S’ (in
fact, the (3 + 1)-decompositionof Donaldsontheory, see refs. [41,1,18] for
details).However, from the generalargumentsof section3 we know that only
the constantFourier modeswill contribute,so thatone is left with an effective
three dimensionalaction which is identical to the one obtainedby the first
method.

Irrespectiveof how onechoosesto go aboutconstructingtheaction (thereare
still furtherpossibilities,see,e.g.,refs. [13,14,17]), it reads

SM =f(BlFA+csB1*Bl/2+dAu*dAu/2_dA~*dA~+~dAw)

(4.30)

u is ascalarfield, andas in supersymmetricquantummechanicswehavedenoted
the field x of the Mathai—Quillenformulaby ~7.The restshouldlook familiar.
Superficially, this action is very similar to that of Donaldsontheory. There is
a Gaussianconstraintonto flat connections,the tangentsvi haveto satisfy the
linearizedflatnessequations,andtherearecubic interactiontermsinvolving the

scalarfields /, ~ andu. However, thereis oneimportantdifference,namelythat
thereis a perfectsymmetrybetweenvi and ~7.As in supersymmetricquantum
mechanics,both representtangentvectors;we also seethat botharegaugefixed
to be horizontal, andbothhaveto be tangentto M3. In particular, therefore,
therewill beanequalnumberof vi and~ zeromodesandwehavethe possibility
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of obtaininga non-zeroresultevenif dim(M3) ~ 0. This is reassuringas we,
after all, expectto find Z(SM) = x(M3). Let usnow showthat this is indeed
the case.

— First of all integrationovermj andi~forcesvi andvito be horizontal,h
4vi =

vi, h~iJ= ¶, i.e., to representtangentvectorsto A
3/c3.

— Setting (5 = 1, integrationover ~5yields ~ = —G~* [w,~w],giving riseto
a term

(*[~7,*~71,G~*[vi,*v/I)/2

in the action.
— The equationof motion for u reads

u = G~*[vi,*~]

andplugging thisback into the actiononeobtainsa term

K*[vi,*~i1,G~* [vi,*~])/2.

— Thiscombinationof Greenfunctionis preciselythatappearingin the for-
mula (4.7) for the Riemanncurvaturetensor1?.~ic.Thus we havealreadyre-
ducedthe action to the form SM = ~ + “something” andwe expectthe
“something”to be the contribution (4.10) to RM, eq. (4.8), quadraticin the
extrinsiccurvatureKM.

— To evaluatethe integralover the remainingfields A, vi, and~i7we expand
themabouttheir classicalconfigurations,which we can taketo beflat connec-
tionsA~andtheir tangents(becauseof (s-independence).By standardarguments
we mayrestrictourselvesto a one-loopapproximationandto thisorderthe re-
mainingtermsin the actionbecome

f(dACAq * dAc~4q/2+ ~ vic]Aq).

— Finally, integrationover Aq yields

([vi~~~ vic])/2,

which werecognizeto bepreciselythe contribution(4.10)of KM. Thuswe have

reducedthe action (4.30) to 7~M, expressedin termsof the classicalconfigura-
tionsA~,vic and ~JC. We arenow on familiar ground [see,e.g., (2.25), (3.20)]
andknow that evaluationof this finite dimensionalintegralgives

Z(SM)=x(M). (4.31)

This calculationalso illustrateshow the Gauss—Codazziequationsemergefrom

the Mathai—Quillenform in general.Guidedby thisexampleit is now straight-
forward to performthe analogousmanipulationsin the finite dimensionalcase
(section2) andin supersymmetricquantummechanics(section3).

We endthis 3d examplewith the remarkthat, by a resultof Taubes[26], the
partition function of (2.24) formally equalsthe Cassoninvariant of Al if M is
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a homologythree-sphere[13]. This, combinedwith the aboveconsiderations,

has led us to proposex (M) as a candidatefor the definition of the Casson
invariantof moregeneralthree-manifolds(see ref. [17] for somepreliminary
considerations).

The simplestexampleto considerin two dimensionsis the analogueof Don-
aldsontheory, i.e. a topological field theory describingintersectiontheory on
a moduli spaceM

2 of flat connectionsin two dimensions.Insteadof the bun-
dle S~with standardfibre Q~(M,g), eq. (4.16),we choosethe bundleSo, eq.
(4.15), with standardfibre Q°(M,g).This will havethe effect of replacingthe
self-dual two-forms B+ andx+ of Donaldsontheoryby zero-formsB

0 andXo.
A naturalsectionof

5o is s(A) = *F
4 with zero locus )v1

2. This results in the
tradingof (FA)+ and its linearization(dAvi)+ for FA andits linearizationdAyt
in the action (4.17). With this dictionary in mind the action is preciselythe
sameas that of Donaldsontheory. It is also the 2d versionof (4.22) andwe
havethusjust completedthe constructionof

Example 5. X = A2/c2,E = 5o~s = *FA. The fundamentalreasonfor why this
theory is so similar to Donaldsontheory is that in both casesthe deformation
complexis short so thatonewill find essentiallythe samefield content.In three
dimensions,on the otherhand,the deformationcomplexis longerby oneterm
andthis is reflectedin the appearanceof the scalarfield u in (4.30).

Again, the partition function, i.e. the regularizedEuler numberof 5o~will
vanishwhendim(M2) � 0. But, nonetoo surprisingly,therealsoexistanalogues
ofthe Donaldsonpolynomials,theobservablesof Donaldsontheory,whichcome
to the rescuein this case.Life in two dimensionsis easierthan in four, andthe
correspondingintersectionnumbershave indeedbeencalculatedrecently by
Thaddeus[42] using powerful tools of conformal field theory and algebraic

geometry(see also refs. [43,44]).
As our final examplelet usconsidera topological gaugetheory representing

the Euler characteristicof M2. As mentionedabove,*FA is nota vectorfield on
so that it is not immediatelyobviouswhich sectionof TA2/c2to choose.

Thedimensionalreductionoftheaction (4.30)suggeststhat the right basespace

to consideris X = A2 xQ°(M,g), wherethe secondfactor representsthe third
componentp of A. Then a possiblesectionof TX is V(A,p) = (*dAp,*FA),
whosezero locus (for irreducibleA) is indeedpreciselythe spaceof flat connec-

tions. But this is not the completestory yet. The problem is that *dAp is only
horizontal if A is flat (d,~* dAp = [*FA,p]). Thus,one possibility is to usea
delta function insteadof a Gaussianconstraintonto flat connections(cs = 0).

This action canbe found in ref. [17]. Alternatively, one might attempt to re-
place*d

4p by hA*dAp. Thisnecessitatesthe introductionofadditionalauxiliary
fields to eliminatethe non-locality of hA, anda more detailedinvestigationof
this possibilityis left to the reader.
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